Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
  • CiteScore value: 3.71 CiteScore
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 7, issue 2 | Copyright
Atmos. Meas. Tech., 7, 637-645, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Feb 2014

Research article | 24 Feb 2014

Ground-based all-sky mid-infrared and visible imagery for purposes of characterizing cloud properties

D. I. Klebe1,4, R. D. Blatherwick2,4, and V. R. Morris3 D. I. Klebe et al.
  • 1Denver Museum of Nature and Science, Denver, Colorado, USA
  • 2University of Denver, Denver, Colorado, USA
  • 3Pacific Northwest National Laboratory, Richland, Washington, USA
  • 4Solmirus Corporation, Woodland Park, Colorado, USA

Abstract. This paper describes the All Sky Infrared Visible Analyzer (ASIVA), a multi-purpose visible and infrared sky imaging and analysis instrument whose primary function is to provide radiometrically calibrated imagery in the mid-infrared (mid-IR) atmospheric window. This functionality enables the determination of diurnal fractional sky cover and estimates of sky/cloud temperature from which one can derive estimates of sky/cloud emissivity and cloud height. This paper describes the calibration methods and performance of the ASIVA instrument with particular emphasis on data products being developed for the meteorological community. Data presented here were collected during the Solmirus' ASIVA campaign conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility from 21 May to 27 July 2009. The purpose of this campaign was to determine the efficacy of IR technology in providing reliable nighttime sky cover data. Significant progress has been made in the analysis of the campaign data over the past several years and the ASIVA has proven to be an excellent instrument for determining sky cover as well as the potential for determining sky/cloud temperature, sky/cloud emissivity, precipitable water vapor (PWV), and ultimately cloud height.

Publications Copernicus