Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
  • CiteScore<br/> value: 3.59 CiteScore
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 7, 81-93, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
13 Jan 2014
Open-path, quantum cascade-laser-based sensor for high-resolution atmospheric ammonia measurements
D. J. Miller1,2, K. Sun1,2, L. Tao1,2, M. A. Khan1,2,*, and M. A. Zondlo1,2 1Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08540, USA
2Center for Mid-Infrared Technologies for Health and the Environment, NSF-ERC, Princeton, NJ, USA
*now at: Delaware State University, Dover, DE 19901, USA
Abstract. We demonstrate a compact, open-path, quantum cascade-laser-based atmospheric ammonia sensor operating at 9.06 μm for high-sensitivity, high temporal resolution, ground-based measurements. Atmospheric ammonia (NH3) is a gas-phase precursor to fine particulate matter, with implications for air quality and climate change. Currently, NH3 sensing challenges have led to a lack of widespread in situ measurements. Our open-path sensor configuration minimizes sampling artifacts associated with NH3 surface adsorption onto inlet tubing and reduced pressure sampling cells, as well as condensed-phase partitioning ambiguities. Multi-harmonic wavelength modulation spectroscopy allows for selective and sensitive detection of atmospheric pressure-broadened absorption features. An in-line ethylene reference cell provides real-time calibration (±20% accuracy) and normalization for instrument drift under rapidly changing field conditions. The sensor has a sensitivity and noise-equivalent limit (1σ) of 0.15 ppbv NH3 at 10 Hz, a mass of ~ 5 kg and consumes ~ 50 W of electrical power. The total uncertainty in NH3 measurements is 0.20 ppbv NH3 ± 10%, based on a spectroscopic calibration method. Field performance of this open-path NH3 sensor is demonstrated, with 10 Hz time resolution and a large dynamic response for in situ NH3 measurements. This sensor provides the capabilities for improved in situ gas-phase NH3 sensing relevant for emission source characterization and flux measurements.

Citation: Miller, D. J., Sun, K., Tao, L., Khan, M. A., and Zondlo, M. A.: Open-path, quantum cascade-laser-based sensor for high-resolution atmospheric ammonia measurements, Atmos. Meas. Tech., 7, 81-93,, 2014.
Publications Copernicus