Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
    3.650
  • CiteScore value: 3.37 CiteScore
    3.37
  • SNIP value: 1.253 SNIP 1.253
  • IPP value: 3.29 IPP 3.29
  • SJR value: 1.869 SJR 1.869
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
  • h5-index value: 47 h5-index 47
Volume 7, issue 4 | Copyright
Atmos. Meas. Tech., 7, 907-917, 2014
https://doi.org/10.5194/amt-7-907-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Apr 2014

Research article | 04 Apr 2014

Role of Coarse and Fine Mode Aerosols in MODIS AOD Retrieval: a case study over southern India

M. N. Sai Suman1, H. Gadhavi1, V. Ravi Kiran1, A. Jayaraman1, and S. V. B. Rao2 M. N. Sai Suman et al.
  • 1National Atmospheric Research Laboratory, Gadanki, 517 112, India
  • 2Sri Venkateswara University, Tirupati, 517 502, India

Abstract. In the present study we compare the MODIS (Moderate Resolution Imaging Spectroradiometer) derived aerosol optical depth (AOD) data with that obtained from operating sky-radiometer at a remote rural location in southern India (Gadanki, 13.45° N, 79.18° E) from April 2008 to March 2011. While the comparison between total (coarse mode + fine mode) AODs shows correlation coefficient (R) value of about 0.71 for Terra and 0.77 for Aqua, if one separates the AOD into fine and coarse mode, the comparison becomes very poor, particularly for fine mode with an R value of 0.44 for both Terra and Aqua. The coarse mode AOD derived from MODIS and sky-radiometer compare better with an R value of 0.74 for Terra and 0.66 for Aqua. The seasonal variation is also well captured by both ground-based and satellite measurements. It is shown that both the total AOD and fine mode AOD are significantly underestimated with slope of regression line 0.75 and 0.35 respectively, whereas the coarse mode AOD is overestimated with a slope value of 1.28 for Terra. Similar results are found for Aqua where the slope of the regression line for total AOD and fine mode AOD are 0.72 and 0.27 whereas 0.95 for coarse mode. The fine mode fraction derived from MODIS data is less than one-half of that derived from the sky-radiometer data. Based on these observations and comparison of single scattering albedo observed using sky-radiometer with that of MODIS aerosol models, we argue that the selection of aerosol types used in the MODIS retrieval algorithm may not be appropriate particularly in the case of southern India. Instead of selecting a moderately absorbing aerosol model (as being done currently in the MODIS retrieval) a more absorbing aerosol model could be a better fit for the fine mode aerosols, while reverse is true for the coarse mode aerosols, where instead of using "dust aerosols" which is relatively absorbing type, usage of coarse sea-salt particles which is less absorbing is more appropriate. However, not all the differences could be accounted based on aerosol model, other factors like errors in retrieval of surface reflectance may also be significant in causing underestimation of AOD by MODIS.

Publications Copernicus
Download
Citation
Share