Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
  • CiteScore<br/> value: 3.59 CiteScore
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 7, 931-939, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
07 Apr 2014
Light scattering at small angles by atmospheric irregular particles: modelling and laboratory measurements
T. Lurton1, J.-B. Renard1, D. Vignelles1, M. Jeannot1, R. Akiki2, J.-L. Mineau2, and T. Tonnelier2 1Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, CNRS UMR7328, 3A, avenue de la Recherche Scientifique, 45071 Orléans, France
2Environnement S. A., 111, boulevard Maximilien-Robespierre, 78300 Poissy, France
Abstract. We have investigated the behaviour of light scattering by particulates of various sizes (0.1 μm to 100 μm) at a small scattering angle (below 20°). It has been previously shown that, for a small angle, the scattered intensities are weakly dependent upon the particulates' composition (Renard et al., 2010). Particles found in the atmosphere exhibit roughness that leads to large discrepancies with the classical Mie solution in terms of scattered intensities in the low angular set-up. This article focuses on building an effective theoretical tool to predict the behaviour of light scattering by real particulates at a small scattering angle.

We present both the classical Mie theory and its adaptation to the case of rough particulates with a fairly simple roughness parameterisation. An experimental device was built, corresponding to the angular set-up of interest (low scattering angle and therefore low angular aperture). Measurements are presented that confirm the theoretical results with good agreement. It was found that differences between the classical Mie solution and actual measurements – especially for large particulates – can be attributed to the particulate roughness.

It was also found that, in this low angular set-up, saturation of the scattered intensities occurs for relatively small values of the roughness parameter. This confirms the low variability in the scattered intensities observed for atmospheric particulates of different kinds. A direct interest of this study is a broadening of the dynamic range of optical counters: using a small angle of aperture for measurements allows greater dynamics in terms of particle size. Thus it allows a single device to observe a broad range of particle sizes whilst utilising the same electronics.

Citation: Lurton, T., Renard, J.-B., Vignelles, D., Jeannot, M., Akiki, R., Mineau, J.-L., and Tonnelier, T.: Light scattering at small angles by atmospheric irregular particles: modelling and laboratory measurements, Atmos. Meas. Tech., 7, 931-939,, 2014.
Publications Copernicus