Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 8, issue 4 | Copyright
Atmos. Meas. Tech., 8, 1719-1731, 2015
https://doi.org/10.5194/amt-8-1719-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Apr 2015

Research article | 10 Apr 2015

Synergistic angular and spectral estimation of aerosol properties using CHRIS/PROBA-1 and simulated Sentinel-3 data

W. H. Davies and P. R. J. North W. H. Davies and P. R. J. North
  • College of Science, Swansea University, Singleton Park, Swansea, SA2 8PP, UK

Abstract. We develop a method to derive aerosol properties over land surfaces using combined spectral and angular information, such as available from ESA Sentinel-3 mission, to be launched in 2015. A method of estimating aerosol optical depth (AOD) using only angular retrieval has previously been demonstrated on data from the ENVISAT and PROBA-1 satellite instruments, and is extended here to the synergistic spectral and angular sampling of Sentinel-3. The method aims to improve the estimation of AOD, and to explore the estimation of fine mode fraction (FMF) and single scattering albedo (SSA) over land surfaces by inversion of a coupled surface/atmosphere radiative transfer model. The surface model includes a general physical model of angular and spectral surface reflectance. An iterative process is used to determine the optimum value of the aerosol properties providing the best fit of the corrected reflectance values to the physical model. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer (CHRIS) images. The values obtained from these CHRIS observations are validated using ground-based sun photometer measurements. Results from 22 image sets using the synergistic retrieval and improved aerosol models show an RMSE of 0.06 in AOD, reduced to 0.03 over vegetated targets.

Publications Copernicus
Download
Short summary
We develop a method to derive aerosol properties over land surfaces using simulated data from the ESA Sentinel-3 mission. The method aims to improve the estimation of aerosol optical depth and to explore the estimation of other aerosol properties using models. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer images, and validated using ground-based sun-photometer measurements. Results show an improvement over the previous method.
We develop a method to derive aerosol properties over land surfaces using simulated data from...
Citation
Share