Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 8, issue 5 | Copyright

Special issue: EARLINET, the European Aerosol Research Lidar Network

Atmos. Meas. Tech., 8, 2207-2223, 2015
https://doi.org/10.5194/amt-8-2207-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 May 2015

Research article | 29 May 2015

Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS

F. Madonna1, F. Amato1, J. Vande Hey2, and G. Pappalardo1 F. Madonna et al.
  • 1Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA),Consiglio Nazionale delle Ricerche, C. da S. Loja – Zona Industriale, 85050 Tito Scalo, Potenza, Italy
  • 2Department of Physics and Astronomy, Earth Observation Science Group, University of Leicester, University Road, Leicester, LE1 7RH, UK

Abstract. Despite their differences from more advanced and more powerful lidars, the low construction and operation cost of ceilometers (originally designed for cloud base height monitoring) has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represents a strong motivation to investigate both the extent to which they can be used to fill in the geographical gaps between advanced lidar stations and also how their continuous data flow can be linked to existing networks of the more advanced lidars, like EARLINET (European Aerosol Research Lidar Network).

In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol properties through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E), in the framework of the ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of 6 months. The comparison of the attenuated backscatter coefficient profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the signal to noise ratio (SNR) but also due to changes in the ambient temperature on the short and mid-term stability of ceilometer calibration. Therefore, technological improvements are needed to move ceilometers towards operational use in the monitoring of atmospheric aerosols in the low and free troposphere.

Publications Copernicus
Special issue
Download
Short summary
This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of 6 months. The comparison of the attenuated backscatter profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the SNR, but also due to effect of changes in the ambient temperature on the stability of ceilometer calibration over short and mid-term.
This work is the first time that three different commercial ceilometers with an advanced Raman...
Citation
Share