Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 8, issue 7 | Copyright
Atmos. Meas. Tech., 8, 3047-3057, 2015
https://doi.org/10.5194/amt-8-3047-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 31 Jul 2015

Research article | 31 Jul 2015

Calibration and instrumental line shape characterization of a set of portable FTIR spectrometers for detecting greenhouse gas emissions

M. Frey1, F. Hase1, T. Blumenstock1, J. Groß1, M. Kiel1, G. Mengistu Tsidu1,3, K. Schäfer2, M. K. Sha1, and J. Orphal1 M. Frey et al.
  • 1Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe, Germany
  • 2Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-IFU), Garmisch-Partenkirchen, Germany
  • 3Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia

Abstract. A comprehensive calibration procedure for mobile, low-resolution, solar-absorption FTIR spectrometers, used for greenhouse gases observations, is developed. These instruments commend themselves for campaign use and deployment at remote sites. The instrumental line shape (ILS) of each spectrometer has been thoroughly characterized by analyzing the shape of H2O signatures in open path spectra. A setup for the external source is suggested and the invariance of derived ILS parameters with regard to chosen path length is demonstrated. The instrumental line shape characteristics of all spectrometers were found to be close to nominal. Side-by-side solar observations before and after a campaign, which involved shipping of all spectrometers to a selected target site and back, are applied for verifying the temporal invariability of instrumental characteristics and for deriving intercalibration factors for XCO2 and XCH4, which take into account residual differences of instrumental characteristics. An excellent level of agreement and stability was found between the different spectrometers: the uncorrected biases in XCO2 and XCH4 are smaller than 0.01 and 0.15 %, respectively, and the drifts are smaller than 0.005 and 0.035 %. As an additional sensitive demonstration of the instrumental performance we show the excellent agreement of ground pressure values obtained from the total column measurements of O2 and barometric records. We find a calibration factor of 0.9700 for the spectroscopic measurements in comparison to the barometric records and a very small scatter between the individual spectrometers (0.02 %). As a final calibration step, using a co-located TCCON (Total Carbon Column Observation Network) spectrometer as a reference, a common scaling factor has been derived for the XCO2 and XCH4 products, which ensures that the records are traceable to the WMO in situ scale.

Publications Copernicus
Download
Citation
Share