Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 8, issue 8
Atmos. Meas. Tech., 8, 3135–3145, 2015
https://doi.org/10.5194/amt-8-3135-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 3135–3145, 2015
https://doi.org/10.5194/amt-8-3135-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Aug 2015

Research article | 05 Aug 2015

Retrieval of vertical profiles of atmospheric refraction angles by inversion of optical dilution measurements

D. Fussen, C. Tétard, E. Dekemper, D. Pieroux, N. Mateshvili, F. Vanhellemont, G. Franssens, and P. Demoulin D. Fussen et al.
  • Belgian Institute for Space Aeronomy, 3 Avenue Circulaire, 1180 Brussels, Belgium

Abstract. In this paper, we consider occultations of celestial bodies through the atmospheric limb from low Earth orbit satellites and we show how the usual change of tangent altitude associated with atmospheric refraction is inseparably connected to a variation of the observed apparent intensity, for extended and pointlike sources. We demonstrate, in the regime of weak refraction angles, that atmospheric optical dilution and image deformation are strictly concomitant. The approach leads to the integration of a simple differential equation related to the observed transmittance in the absence of other absorbing molecules along the optical path. The algorithm does not rely on the absolute knowledge of the radiometer pointing angle that is related to the accurate knowledge of the satellite attitude. We successfully applied the proposed method to the measurements performed by two past occultation experiments: GOMOS for stellar and ORA for solar occultations. The developed algorithm (named ARID) will be applied to the imaging of solar occultations in a forthcoming pico-satellite mission.

Publications Copernicus
Download
Short summary
In this paper, we consider occultations of celestial bodies through the atmospheric limb from low Earth orbit satellites and we show how the usual change of tangent altitude associated with atmospheric refraction is inseparably connected to a variation of the observed apparent intensity, for extended and pointlike sources. We demonstrate, in the regime of weak refraction angles, that atmospheric optical dilution and image deformation are strictly concomitant.
In this paper, we consider occultations of celestial bodies through the atmospheric limb from...
Citation