Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 8, issue 1
Atmos. Meas. Tech., 8, 315–333, 2015
https://doi.org/10.5194/amt-8-315-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 315–333, 2015
https://doi.org/10.5194/amt-8-315-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Jan 2015

Research article | 14 Jan 2015

Forecast indices from a ground-based microwave radiometer for operational meteorology

D. Cimini1,2, M. Nelson3, J. Güldner4, and R. Ware3,5 D. Cimini et al.
  • 1IMAA-CNR, Potenza, Italy
  • 2CETEMPS, University of L'Aquila, L'Aquila, Italy
  • 3Radiometrics, Boulder, Colorado, USA
  • 4DWD, Meteorological Observatory Lindenberg – Richard Aßmann Observatory, Lindenberg, Germany
  • 5UCAR, Boulder, Colorado, USA

Abstract. Today, commercial microwave radiometer profilers (MWRPs) are robust and unattended instruments providing real-time, accurate atmospheric observations at ~ 1 min temporal resolution under nearly all weather conditions. Common commercial units operate in the 20–60 GHz frequency range and are able to retrieve profiles of temperature, vapour density, and relative humidity. Temperature and humidity profiles retrieved from MWRP data are used here to feed tools developed for processing radiosonde observations to obtain values of forecast indices (FIs) commonly used in operational meteorology. The FIs considered here include K index, total totals, KO index, Showalter index, T1 gust, fog threat, lifted index, S index (STT), Jefferson index, microburst day potential index (MDPI), Thompson index, TQ index, and CAPE (convective available potential energy). Values of FIs computed from radiosonde and MWRP-retrieved temperature and humidity profiles are compared in order to quantitatively demonstrate the level of agreement and the value of continuous FI updates. This analysis is repeated for two sites at midlatitude, the first one located at low altitude in central Europe (Lindenberg, Germany) and the second one located at high altitude in North America (Whistler, Canada). It is demonstrated that FIs computed from MWRPs well correlate with those computed from radiosondes, with the additional advantage of nearly continuous updates. The accuracy of MWRP-derived FIs is tested against radiosondes, taken as a reference, showing different performances depending upon index and environmental situation. Overall, FIs computed from MWRP retrievals agree well with radiosonde values, with correlation coefficients usually above 0.8 (with few exceptions). We conclude that MWRP retrievals can be used to produce meaningful FIs, with the advantage (with respect to radiosondes) of nearly continuous updates.

Publications Copernicus
Download
Short summary
Forecast indices commonly used in operational meteorology can be computed from temperature and humidity profiles retrieved from a ground-based microwave radiometer. The values of radiometer-derived forecast indices agree well with values computed from radiosondes (correlation usually above 0.8). Radiometer-derived forecast indices offer the advantage (with respect to radiosondes) of nearly continuous data, capturing the entire diurnal cycle and providing fresh and timely data to forecasters.
Forecast indices commonly used in operational meteorology can be computed from temperature and...
Citation