Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 8, issue 8
Atmos. Meas. Tech., 8, 3177–3196, 2015
https://doi.org/10.5194/amt-8-3177-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 3177–3196, 2015
https://doi.org/10.5194/amt-8-3177-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Aug 2015

Research article | 12 Aug 2015

Calibration of 3-D wind measurements on a single-engine research aircraft

C. Mallaun et al.
Related authors  
Subsiding shells and the distribution of up- and downdraughts in warm cumulus clouds over land
Christian Mallaun, Andreas Giez, Georg J. Mayr, and Mathias W. Rotach
Atmos. Chem. Phys., 19, 9769–9786, https://doi.org/10.5194/acp-19-9769-2019,https://doi.org/10.5194/acp-19-9769-2019, 2019
Short summary
Mountain waves modulate the water vapor distribution in the UTLS
Romy Heller, Christiane Voigt, Stuart Beaton, Andreas Dörnbrack, Andreas Giez, Stefan Kaufmann, Christian Mallaun, Hans Schlager, Johannes Wagner, Kate Young, and Markus Rapp
Atmos. Chem. Phys., 17, 14853–14869, https://doi.org/10.5194/acp-17-14853-2017,https://doi.org/10.5194/acp-17-14853-2017, 2017
Observed versus simulated mountain waves over Scandinavia – improvement of vertical winds, energy and momentum fluxes by enhanced model resolution?
Johannes Wagner, Andreas Dörnbrack, Markus Rapp, Sonja Gisinger, Benedikt Ehard, Martina Bramberger, Benjamin Witschas, Fernando Chouza, Stephan Rahm, Christian Mallaun, Gerd Baumgarten, and Peter Hoor
Atmos. Chem. Phys., 17, 4031–4052, https://doi.org/10.5194/acp-17-4031-2017,https://doi.org/10.5194/acp-17-4031-2017, 2017
Related subject area  
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
The Disdrometer Verification Network (DiVeN): a UK network of laser precipitation instruments
Ben S. Pickering, Ryan R. Neely III, and Dawn Harrison
Atmos. Meas. Tech., 12, 5845–5861, https://doi.org/10.5194/amt-12-5845-2019,https://doi.org/10.5194/amt-12-5845-2019, 2019
Short summary
The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: first applications in the cloudy Arctic boundary layer
Ulrike Egerer, Matthias Gottschalk, Holger Siebert, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 12, 4019–4038, https://doi.org/10.5194/amt-12-4019-2019,https://doi.org/10.5194/amt-12-4019-2019, 2019
Short summary
Identification of platform exhaust on the RV Investigator
Ruhi S. Humphries, Ian M. McRobert, Will A. Ponsonby, Jason P. Ward, Melita D. Keywood, Zoe M. Loh, Paul B. Krummel, and James Harnwell
Atmos. Meas. Tech., 12, 3019–3038, https://doi.org/10.5194/amt-12-3019-2019,https://doi.org/10.5194/amt-12-3019-2019, 2019
Short summary
Evaluation of Windsond S1H2 performance in Kumasi during the 2016 DACCIWA field campaign
Geoffrey Elie Quentin Bessardon, Kwabena Fosu-Amankwah, Anders Petersson, and Barbara Jane Brooks
Atmos. Meas. Tech., 12, 1311–1324, https://doi.org/10.5194/amt-12-1311-2019,https://doi.org/10.5194/amt-12-1311-2019, 2019
Short summary
Recovery of the three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer
Xinhua Zhou, Qinghua Yang, Xiaojie Zhen, Yubin Li, Guanghua Hao, Hui Shen, Tian Gao, Yirong Sun, and Ning Zheng
Atmos. Meas. Tech., 11, 5981–6002, https://doi.org/10.5194/amt-11-5981-2018,https://doi.org/10.5194/amt-11-5981-2018, 2018
Short summary
Cited articles  
Bange, J., Esposito, M., Lenschow, D. H., Brown, P. R. A., Dreiling, V., Giez, A., Mahrt, L., Malinowki, S. P., Rodi, A. R., Shaw, R. A., Siebert, H., Smit, H., and Zöger, M.: Measurement of Aircraft State and Thermodynamic and Dynamic Variables, in: Airborne Measurements for Environmental Research, edited by: Wendisch, M. and Brenguier, J.-L., 7–75, Wiley-VCH, 2013.
Boegel, W. and Baumann, R.: Test and calibration of the DLR falcon wind measuring system by maneuvers, J. Atmos. Ocean. Tech., 8, 5–18, https://doi.org/10.1175/1520-0426(1991)008<0005:TACOTD>2.0.CO;2, 1991.
Cramer, M.: Performance of IGI AEROcontrol-IId GPS/inertial system, final report, University of Stuttgart, Institute for Photogrammetry, D-70174 Stuttgart, Geschwister-Scholl-Str. 24 D, available at: http://www.ifp.uni-stuttgart.de/publications/2001/Cramer_Igi01.pdf (last access: 26 January 2015), 2001.
De Leo, R. V. and Hagen, F. W.: Aerodynamic performance of Rosemount model 858AJ air data sensor, Rosemount Report 8767, Aeronautical Research Department, Rosemount Inc., P.O. Box 35129, Minneapolis, Minnesota 55435 USA, 1976.
Druee, C. and Heinemann, G.: A review and practical guide to in-flight calibration for aircraft turbulence sensors, J. Atmos. Ocean. Tech., 30, 2820–2837, https://doi.org/10.1175/JTECH-D-12-00103.1, 2013.
Publications Copernicus
Download
Short summary
We demonstrate a calibration method for the three-dimensional wind measurements on a research aircraft, which are strongly influenced by dynamical effects during flight. We correct these errors step by step after an extensive test flight program including new methods to gain optimum correction coefficients and a direct estimation of the residual errors. The overall error, estimated with a novel error propagation scheme, is 0.3 m/s for the horizontal and 0.2 m/s for the vertical wind.
We demonstrate a calibration method for the three-dimensional wind measurements on a research...
Citation