Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 8, issue 8 | Copyright
Atmos. Meas. Tech., 8, 3219-3228, 2015
https://doi.org/10.5194/amt-8-3219-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Aug 2015

Research article | 13 Aug 2015

High-resolution measurement of cloud microphysics and turbulence at a mountaintop station

H. Siebert1, R. A. Shaw2, J. Ditas5, T. Schmeissner1, S. P. Malinowski3, E. Bodenschatz4, and H. Xu4 H. Siebert et al.
  • 1Leibniz Institute for Tropospheric Research, Leipzig, Germany
  • 2Department of Physics, Michigan Technological University, Michigan, USA
  • 3Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
  • 4Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany
  • 5Max Planck Institute for Chemistry, Mainz, Germany

Abstract. Mountain research stations are advantageous not only for long-term sampling of cloud properties but also for measurements that are prohibitively difficult to perform on airborne platforms due to the large true air speed or adverse factors such as weight and complexity of the equipment necessary. Some cloud–turbulence measurements, especially Lagrangian in nature, fall into this category. We report results from simultaneous, high-resolution and collocated measurements of cloud microphysical and turbulence properties during several warm cloud events at the Umweltforschungsstation Schneefernerhaus (UFS) on Zugspitze in the German Alps. The data gathered were found to be representative of observations made with similar instrumentation in free clouds. The observed turbulence shared all features known for high-Reynolds-number flows: it exhibited approximately Gaussian fluctuations for all three velocity components, a clearly defined inertial subrange following Kolmogorov scaling (power spectrum, and second- and third-order Eulerian structure functions), and highly intermittent velocity gradients, as well as approximately lognormal kinetic energy dissipation rates. The clouds were observed to have liquid water contents on the order of 1 g m−3 and size distributions typical of continental clouds, sometimes exhibiting long positive tails indicative of large drop production through turbulent mixing or coalescence growth. Dimensionless parameters relevant to cloud–turbulence interactions, the Stokes number and settling parameter are in the range typically observed in atmospheric clouds. Observed fluctuations in droplet number concentration and diameter suggest a preference for inhomogeneous mixing. Finally, enhanced variance in liquid water content fluctuations is observed at high frequencies, and the scale break occurs at a value consistent with the independently estimated phase relaxation time from microphysical measurements.

Publications Copernicus
Download
Short summary
We report results from simultaneous, high-resolution and collocated measurements of cloud microphysical and turbulence properties during several warm cloud events at the Umweltforschungsstation Schneefernerhaus (UFS) on Zugspitze in the German Alps. The data gathered were found to be representative of observations made with similar instrumentation in free clouds.
We report results from simultaneous, high-resolution and collocated measurements of cloud...
Citation
Share