Articles | Volume 8, issue 1
https://doi.org/10.5194/amt-8-335-2015
https://doi.org/10.5194/amt-8-335-2015
Research article
 | 
15 Jan 2015
Research article |  | 15 Jan 2015

Fiber optic distributed temperature sensing for the determination of air temperature

S. A. P. de Jong, J. D. Slingerland, and N. C. van de Giesen

Related authors

A Bayesian model for quantifying errors in citizen science data: application to rainfall observations from Nepal
Jessica A. Eisma, Gerrit Schoups, Jeffrey C. Davids, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 27, 3565–3579, https://doi.org/10.5194/hess-27-3565-2023,https://doi.org/10.5194/hess-27-3565-2023, 2023
Short summary
On the importance of observation uncertainty when evaluating and comparing models: a hydrological example
Jerom P.M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
EGUsphere, https://doi.org/10.5194/egusphere-2023-1156,https://doi.org/10.5194/egusphere-2023-1156, 2023
Short summary
Phenophase-based comparison of field observations to satellite-based actual evaporation estimates of a natural woodland: miombo woodland, southern Africa
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023,https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
On the importance of phenology in the evaporative process of the Miombo Woodland: Could it be why satellite-based evaporation estimates differ?
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Petra Hulsman, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-39,https://doi.org/10.5194/hess-2023-39, 2023
Revised manuscript under review for HESS
Short summary
Large-sample assessment of varying spatial resolution on the streamflow estimates of the wflow_sbm hydrological model
Jerom P. M. Aerts, Rolf W. Hut, Nick C. van de Giesen, Niels Drost, Willem J. van Verseveld, Albrecht H. Weerts, and Pieter Hazenberg
Hydrol. Earth Syst. Sci., 26, 4407–4430, https://doi.org/10.5194/hess-26-4407-2022,https://doi.org/10.5194/hess-26-4407-2022, 2022
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Instruments and Platforms
Offshore methane detection and quantification from space using sun glint measurements with the GHGSat constellation
Jean-Philippe W. MacLean, Marianne Girard, Dylan Jervis, David Marshall, Jason McKeever, Antoine Ramier, Mathias Strupler, Ewan Tarrant, and David Young
Atmos. Meas. Tech., 17, 863–874, https://doi.org/10.5194/amt-17-863-2024,https://doi.org/10.5194/amt-17-863-2024, 2024
Short summary
Novel use of an adapted ultraviolet double monochromator for measurements of global and direct irradiance, ozone, and aerosol
Alexander Geddes, Ben Liley, Richard McKenzie, Michael Kotkamp, and Richard Querel
Atmos. Meas. Tech., 17, 827–838, https://doi.org/10.5194/amt-17-827-2024,https://doi.org/10.5194/amt-17-827-2024, 2024
Short summary
Geostationary Environment Monitoring Spectrometer (GEMS) polarization characteristics and correction algorithm
Haklim Choi, Xiong Liu, Ukkyo Jeong, Heesung Chong, Jhoon Kim, Myung Hwan Ahn, Dai Ho Ko, Dong-Won Lee, Kyung-Jung Moon, and Kwang-Mog Lee
Atmos. Meas. Tech., 17, 145–164, https://doi.org/10.5194/amt-17-145-2024,https://doi.org/10.5194/amt-17-145-2024, 2024
Short summary
An open-path observatory for greenhouse gases based on near-infrared Fourier transform spectroscopy
Tobias D. Schmitt, Jonas Kuhn, Ralph Kleinschek, Benedikt A. Löw, Stefan Schmitt, William Cranton, Martina Schmidt, Sanam N. Vardag, Frank Hase, David W. T. Griffith, and André Butz
Atmos. Meas. Tech., 16, 6097–6110, https://doi.org/10.5194/amt-16-6097-2023,https://doi.org/10.5194/amt-16-6097-2023, 2023
Short summary
Ground-to-UAV, laser-based emissions quantification of methane and acetylene at long standoff distances
Kevin C. Cossel, Eleanor M. Waxman, Eli Hoenig, Daniel Hesselius, Christopher Chaote, Ian Coddington, and Nathan R. Newbury
Atmos. Meas. Tech., 16, 5697–5707, https://doi.org/10.5194/amt-16-5697-2023,https://doi.org/10.5194/amt-16-5697-2023, 2023
Short summary

Cited articles

Ciocca, F., Lunati, I., Van de Giesen, N. C., and Parlange, M. B.: Heated optical fiber for distributed soil-moisture measurements: A lysimeter experiment, Vadose Zone J., 11, https://doi.org/10.2136/vzj2011.0199, 2012.
Curtis, A. and Kyle, P.: Geothermal point sources identified in a fumarolic ice cave on erebus volcano, antarctica using fiber optic distributed temperature sensing, Geophys. Res. Lett., 38, L16802, https://doi.org/10.1029/2011GL048272, 2011.
Dornstadter, M. and Aufleger, D.: The Prospect for Reservoirs in the 21st Century: Proceedings of the Tenth Conference of the BDS Held at the University of Wales, Bangor on 9–12 September 1998, Thomas Telford Publishing, 1998.
Freifeld, B. M., Finsterle, S., Onstott, T. C., Toole, P., and Pratt, L. M.: Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor, Geophys. Res. Lett., 35, L14309, https://doi.org/10.1029/2008GL034762, 2008.
Hausner, M. B., Suárez, F., Glander, K. E., Van de Giesen, N., Selker, J. S., and Tyler, S. W.: Calibrating single-ended fiber-optic raman spectra distributed temperature sensing data, Sensors, 11, 10859–10879, https://doi.org/10.3390/s111110859, 2011.
Download
Short summary
By using two cylindrical thermometers with different diameters, one can determine what temperature a zero diameter thermometer would have. Such a virtual thermometer would not be affected by solar heating and would take on the temperature of the surrounding air. We applied this principle to atmospheric temperature measurements with fiber optic cables using distributed temperature sensing (DTS). With two unshielded cable pairs, one black pair and one white pair, good results were obtained.