Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 8, issue 8 | Copyright
Atmos. Meas. Tech., 8, 3419-3431, 2015
https://doi.org/10.5194/amt-8-3419-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Aug 2015

Research article | 24 Aug 2015

Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution

C. K. Carbajal Henken1, L. Doppler2, R. Lindstrot3, R. Preusker1, and J. Fischer1 C. K. Carbajal Henken et al.
  • 1Institute for Space Sciences, Freie Universität Berlin (FUB), Berlin, Germany
  • 2Deutscher Wetterdienst, Meteorologisches Observatorium Lindenberg, Richard Assmann Observatorium (DWD, MOL-RAO), Lindenberg, Germany
  • 3EUMETSAT, Eumetsat-Allee 1, Darmstadt, Germany

Abstract. This work presents a study on the sensitivity of two satellite cloud height retrievals to cloud vertical distribution. The difference in sensitivity is exploited by relating the difference in the retrieved cloud heights to cloud vertical extent. The two cloud height retrievals, performed within the Freie Universität Berlin AATSR MERIS Cloud (FAME-C) algorithm, are based on independent measurements and different retrieval techniques. First, cloud-top temperature (CTT) is retrieved from Advanced Along Track Scanning Radiometer (AATSR) measurements in the thermal infrared. Second, cloud-top pressure (CTP) is retrieved from Medium Resolution Imaging Spectrometer (MERIS) measurements in the oxygen-A absorption band and a nearby window channel. Both CTT and CTP are converted to cloud-top height (CTH) using atmospheric profiles from a numerical weather prediction model. First, a sensitivity study using radiative transfer simulations in the near-infrared and thermal infrared was performed to demonstrate, in a quantitative manner, the larger impact of the assumed cloud vertical extinction profile, described in terms of shape and vertical extent, on MERIS than on AATSR top-of-atmosphere measurements. Consequently, cloud vertical extinction profiles will have a larger influence on the MERIS than on the AATSR cloud height retrievals for most cloud types. Second, the difference in retrieved CTH (ΔCTH) from AATSR and MERIS are related to cloud vertical extent (CVE), as observed by ground-based lidar and radar at three ARM sites. To increase the impact of the cloud vertical extinction profile on the MERIS-CTP retrievals, single-layer and geometrically thin clouds are assumed in the forward model. Similarly to previous findings, the MERIS-CTP retrievals appear to be close to pressure levels in the middle of the cloud. Assuming a linear relationship, the ΔCTH multiplied by 2.5 gives an estimate on the CVE for single-layer clouds. The relationship is stronger for single-layer clouds than for multi-layer clouds. Due to large variations of cloud vertical extinction profiles occurring in nature, a quantitative estimate of the cloud vertical extent is accompanied with large uncertainties. Yet, estimates of the CVE provide an additional parameter, next to CTH, that can be obtained from passive imager measurements and can be used to further describe cloud vertical distribution, thus contributing to the characterization of a cloudy scene. To further demonstrate the plausibility of the approach, an estimate of the CVE was applied to a case study. In light of the follow-up mission Sentinel-3 with AATSR and MERIS like instruments, Sea and Land Surface Temperature Radiometer (SLSTR) and (Ocean and Land Colour Instrument) OLCI, respectively, for which the FAME-C algorithm can be easily adapted, a more accurate estimate of the CVE can be expected. OLCI will have three channels in the oxygen-A absorption band, possibly providing enhanced information on cloud vertical distributions.

Publications Copernicus
Download
Short summary
This work presents a study on the sensitivity of two independent satellite cloud height retrievals to cloud vertical distribution. The difference in sensitivity of an oxygen-A absorption band and a thermal infrared based cloud height retrieval, the former being more sensitive to cloud vertical distribution, is exploited by relating the cloud height differences to cloud vertical extent. This could potentially provide additional information on cloud vertical distribution on a global scale.
This work presents a study on the sensitivity of two independent satellite cloud height...
Citation
Share