Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 8, issue 8 | Copyright
Atmos. Meas. Tech., 8, 3467-3480, 2015
https://doi.org/10.5194/amt-8-3467-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 Aug 2015

Research article | 25 Aug 2015

Atmospheric extinction in solar tower plants: absorption and broadband correction for MOR measurements

N. Hanrieder1, S. Wilbert1, R. Pitz-Paal2, C. Emde3, J. Gasteiger3, B. Mayer3,4, and J. Polo5 N. Hanrieder et al.
  • 1German Aerospace Center (DLR), Institute of Solar Research, Plataforma Solar de Almería, Ctra. de Senés s/n km 4, Apartado 39, 04200 Tabernas, Spain
  • 2German Aerospace Center (DLR), Institute of Solar Research, Linder Höhe, 51147 Cologne, Germany
  • 3Meteorological Institute Munich (MIM), Ludwig Maximilian University Munich, Theresienstr. 37, 80333 Munich, Germany
  • 4German Aerospace Center (DLR), Institute for Atmospheric Physics, Münchner Str. 20, 82234 Weßling, Germany
  • 5Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Energy Department, Renewable Energy Division, Avda. Complutense 40, 28040 Madrid, Spain

Abstract. Losses of reflected Direct Normal Irradiance due to atmospheric extinction in concentrated solar tower plants can vary significantly with site and time. The losses of the direct normal irradiance between the heliostat field and receiver in a solar tower plant are mainly caused by atmospheric scattering and absorption by aerosol and water vapor concentration in the atmospheric boundary layer. Due to a high aerosol particle number, radiation losses can be significantly larger in desert environments compared to the standard atmospheric conditions which are usually considered in ray-tracing or plant optimization tools. Information about on-site atmospheric extinction is only rarely available. To measure these radiation losses, two different commercially available instruments were tested, and more than 19 months of measurements were collected and compared at the Plataforma Solar de Almería. Both instruments are primarily used to determine the meteorological optical range (MOR). The Vaisala FS11 scatterometer is based on a monochromatic near-infrared light source emission and measures the strength of scattering processes in a small air volume mainly caused by aerosol particles. The Optec LPV4 long-path visibility transmissometer determines the monochromatic attenuation between a light-emitting diode (LED) light source at 532 nm and a receiver and therefore also accounts for absorption processes. As the broadband solar attenuation is of interest for solar resource assessment for concentrated solar power (CSP), a correction procedure for these two instruments is developed and tested. This procedure includes a spectral correction of both instruments from monochromatic to broadband attenuation. That means the attenuation is corrected for the time-dependent solar spectrum which is reflected by the collector. Further, an absorption correction for the Vaisala FS11 scatterometer is implemented. To optimize the absorption and broadband correction (ABC) procedure, additional measurement input of a nearby sun photometer is used to enhance on-site atmospheric assumptions for description of the atmosphere in the algorithm. Comparing both uncorrected and spectral- and absorption-corrected extinction data from 1-year measurements at the Plataforma Solar de Almería, the mean difference between the scatterometer and the transmissometer is reduced from 4.4 to 0.57 %. Applying the ABC procedure without the usage of additional input data from a sun photometer still reduces the difference between both sensors to about 0.8 %. Applying an expert guess assuming a standard aerosol profile for continental regions instead of additional sun photometer input results in a mean difference of 0.8 %. Additionally, a simulation approach which just uses sun photometer and common meteorological data to determine the on-site atmospheric extinction at surface is presented and corrected FS11 and LPV4 measurements are validated with the simulation results. For T1 km equal to 0.9 and a 10 min time resolution, an uncertainty analysis showed that an absolute uncertainty of about 0.038 is expected for the FS11 and about 0.057 for the LPV4. Combining both uncertainties results in an overall absolute uncertainty of 0.068 which justifies quite well the mean RMSE between both corrected data sets. For yearly averages several error influences average out and absolute uncertainties of 0.020 and 0.054 can be expected for the FS11 and the LPV4, respectively. Therefore, applying this new correction method, both instruments can now be utilized to sufficiently accurately determine the solar broadband extinction in tower plants.

Publications Copernicus
Download
Citation
Share