Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 8, issue 8
Atmos. Meas. Tech., 8, 3493–3517, 2015
https://doi.org/10.5194/amt-8-3493-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 3493–3517, 2015
https://doi.org/10.5194/amt-8-3493-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Aug 2015

Research article | 26 Aug 2015

Performance assessment of a triple-frequency spaceborne cloud–precipitation radar concept using a global cloud-resolving model

J. Leinonen et al.
Viewed  
Total article views: 1,596 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
692 865 39 1,596 33 36
  • HTML: 692
  • PDF: 865
  • XML: 39
  • Total: 1,596
  • BibTeX: 33
  • EndNote: 36
Views and downloads (calculated since 24 Apr 2015)
Cumulative views and downloads (calculated since 24 Apr 2015)
Cited  
Saved (final revised paper)  
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 16 Oct 2019
Publications Copernicus
Download
Short summary
Using multiple frequencies in cloud and precipitation radars enables them to be both sensitive enough to detect thin clouds and to penetrate heavy precipitation, profiling the entire vertical structure of the atmospheric component of the water cycle. Here, we evaluate the performance of a potential future three-frequency space-based radar system by simulating its observations using data from a high-resolution global atmospheric model.
Using multiple frequencies in cloud and precipitation radars enables them to be both sensitive...
Citation