Articles | Volume 8, issue 9
https://doi.org/10.5194/amt-8-3631-2015
https://doi.org/10.5194/amt-8-3631-2015
Research article
 | Highlight paper
 | 
08 Sep 2015
Research article | Highlight paper |  | 08 Sep 2015

The feasibility of water vapor sounding of the cloudy boundary layer using a differential absorption radar technique

M. D. Lebsock, K. Suzuki, L. F. Millán, and P. M. Kalmus

Related authors

Water vapor measurements inside clouds and storms using a differential absorption radar
Luis F. Millán, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel
Atmos. Meas. Tech., 17, 539–559, https://doi.org/10.5194/amt-17-539-2024,https://doi.org/10.5194/amt-17-539-2024, 2024
Short summary
Multifrequency radar observations of marine clouds during the EPCAPE campaign
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, Robert M. Beauchamp, and Arturo Umeyama
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-454,https://doi.org/10.5194/essd-2023-454, 2024
Preprint under review for ESSD
Short summary
A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat/CALIPSO observations
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-266,https://doi.org/10.5194/amt-2023-266, 2024
Revised manuscript under review for AMT
Short summary
Quantifying the dependence of drop spectrum width on cloud drop number concentration for cloud remote sensing
Matthew D. Lebsock and Mikael Witte
Atmos. Chem. Phys., 23, 14293–14305, https://doi.org/10.5194/acp-23-14293-2023,https://doi.org/10.5194/acp-23-14293-2023, 2023
Short summary
What CloudSat cannot see: liquid water content profiles inferred from MODIS and CALIOP observations
Richard M. Schulte, Matthew D. Lebsock, and John M. Haynes
Atmos. Meas. Tech., 16, 3531–3546, https://doi.org/10.5194/amt-16-3531-2023,https://doi.org/10.5194/amt-16-3531-2023, 2023
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
3D wind observations with a compact mobile lidar based on tropo- and stratospheric aerosol backscatter
Thorben H. Mense, Josef Höffner, Gerd Baumgarten, Ronald Eixmann, Jan Froh, Alsu Mauer, Alexander Munk, Robin Wing, and Franz-Josef Lübken
Atmos. Meas. Tech., 17, 1665–1677, https://doi.org/10.5194/amt-17-1665-2024,https://doi.org/10.5194/amt-17-1665-2024, 2024
Short summary
A novel infrared imager for studies of hydroxyl and oxygen nightglow emissions in the mesopause above northern Scandinavia
Peter Dalin, Urban Brändström, Johan Kero, Peter Voelger, Takanori Nishiyama, Trond Trondsen, Devin Wyatt, Craig Unick, Vladimir Perminov, Nikolay Pertsev, and Jonas Hedin
Atmos. Meas. Tech., 17, 1561–1576, https://doi.org/10.5194/amt-17-1561-2024,https://doi.org/10.5194/amt-17-1561-2024, 2024
Short summary
Absolute radiance calibration in the UV and visible spectral range using atmospheric observations during twilight
Thomas Wagner and Jānis Puķīte
Atmos. Meas. Tech., 17, 277–297, https://doi.org/10.5194/amt-17-277-2024,https://doi.org/10.5194/amt-17-277-2024, 2024
Short summary
Measurement uncertainties of scanning microwave radiometers and their influence on temperature profiling
Tobias Böck, Bernhard Pospichal, and Ulrich Löhnert
Atmos. Meas. Tech., 17, 219–233, https://doi.org/10.5194/amt-17-219-2024,https://doi.org/10.5194/amt-17-219-2024, 2024
Short summary
Directly Measuring Atmospheric Turbulence Parameters Using Coherent Doppler Wind Lidar
Jinhong Xian, Chao Lu, Xiaolin Lin, Honglong Yang, Ning Zhang, and Li Zhang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-249,https://doi.org/10.5194/amt-2023-249, 2023
Revised manuscript accepted for AMT
Short summary

Cited articles

Andersson, E., Hólm, E., Bauer, P., Beljaars, A., Kelly, G. A., McNally, A. P., Simmons, A. J., Thépaut, J.-N., and Tompkins, A. M.: Analysis and forecast impact of the main humidity observing systems, Q. J. Roy. Meteor. Soc., 133, 1473–1485, https://doi.org/10.1002/qj.112, 2007.
Ao, C. O., Meehan, T. K., Hajj, G. A., Mannucci, A. J., and Beyerle, G.: Lower troposphere refractivity bias in GPS occultation retrievals, J. Geophys. Res.-Atmos., 108, 4577, https://doi.org/10.1029/2002JD003216, 2003.
Betts, A. K. and Boers, R.: A Cloudiness Transition in a Marine Boundary Layer, J. Atmos. Sci., 47, 1480–1497, https://doi.org/10.1175/1520-0469(1990)047<1480:ACTIAM>2.0.CO;2, 1990.
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, Wiley, New York, 477–482, 1983.
Browell, E. V., Wilkerson, T. D., and McIlrath, T. J.: Water vapor differential absorption lidar development and evaluation, Appl. Optics, 18, 3474, https://doi.org/10.1364/AO.18.003474, 1979.
Download
Short summary
This paper describes the feasibility of using a differential absorption radar technique for the remote sensing of water vapor within clouds near the Earth surface from a spaceborne platform. The proposed methodology is shown to be theoretically achievable and complimentary to existing water vapor remote sensing methods.