Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 8, issue 10
Atmos. Meas. Tech., 8, 3985–4000, 2015
https://doi.org/10.5194/amt-8-3985-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 3985–4000, 2015
https://doi.org/10.5194/amt-8-3985-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Oct 2015

Research article | 01 Oct 2015

Fuzzy logic filtering of radar reflectivity to remove non-meteorological echoes using dual polarization radar moments

D. R. L. Dufton and C. G. Collier
Related subject area  
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of intrinsic mesospheric gravity wave parameters using lidar and airglow temperature and meteor radar wind data
Robert Reichert, Bernd Kaifler, Natalie Kaifler, Markus Rapp, Pierre-Dominique Pautet, Michael J. Taylor, Alexander Kozlovsky, Mark Lester, and Rigel Kivi
Atmos. Meas. Tech., 12, 5997–6015, https://doi.org/10.5194/amt-12-5997-2019,https://doi.org/10.5194/amt-12-5997-2019, 2019
Short summary
Determination of ice water content (IWC) in tropical convective clouds from X-band dual-polarization airborne radar
Cuong M. Nguyen, Mengistu Wolde, and Alexei Korolev
Atmos. Meas. Tech., 12, 5897–5911, https://doi.org/10.5194/amt-12-5897-2019,https://doi.org/10.5194/amt-12-5897-2019, 2019
Short summary
Retrieval of temperature from a multiple channel pure rotational Raman backscatter lidar using an optimal estimation method
Shayamila Mahagammulla Gamage, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
Atmos. Meas. Tech., 12, 5801–5816, https://doi.org/10.5194/amt-12-5801-2019,https://doi.org/10.5194/amt-12-5801-2019, 2019
Short summary
Combined use of volume radar observations and high-resolution numerical weather predictions to estimate precipitation at the ground: methodology and proof of concept
Tony Le Bastard, Olivier Caumont, Nicolas Gaussiat, and Fatima Karbou
Atmos. Meas. Tech., 12, 5669–5684, https://doi.org/10.5194/amt-12-5669-2019,https://doi.org/10.5194/amt-12-5669-2019, 2019
Short summary
A Gaussian mixture method for specific differential phase retrieval at X-band frequency
Guang Wen, Neil I. Fox, and Patrick S. Market
Atmos. Meas. Tech., 12, 5613–5637, https://doi.org/10.5194/amt-12-5613-2019,https://doi.org/10.5194/amt-12-5613-2019, 2019
Short summary
Cited articles  
Bachmann, S. and Zrnić, D. S.: Spectral density of polarimetric variables separating biological scatterers in the VAD display, J. Atmos. Ocean. Tech., 24, 1186–1198, 2007.
Balakrishnan, N. and Zrnić, D. S.: Use of polarization to characterize precipitation and discriminate large hail, J. Atmos. Sci., 47, 1525–1540, 1990.
Bennett, L.: Scan data from NCAS mobile X-band radar. NCAS, British Atmospheric Data Centre, available at: http://catalogue.ceda.ac.uk/uuid/4bb383b7d6ca421bbedd57b8097d5664, last access: 14 April, 2015.
Berenguer, M., Sempere-Torres, D.,Corral, C., and Sánchez-Diezma, R.: A fuzzy logic technique for identifying nonprecipitating echoes in radar scans, J. Atmos. Ocean. Tech., 23, 1157–1180, 2006.
Blyth, A. M., Bennett, L. J., and Collier, C. G.: High-resolution observations of precipitation from cumulonimbus clouds, Meteorol. Appl., 22, 75–89, 2015.
Publications Copernicus
Download
Short summary
This paper describes a radar echo classification scheme, used to identify and remove non-meteorlogical echoes from X-band radar data. The classifier uses fuzzy logic to incorporate multiple radar moments, including linear texture fields, into the decision scheme. The scheme is trained on a limited subset of data from a short field deployment. The feasibility of the scheme is then demonstrated with a range of examples from two field deployments in the UK.
This paper describes a radar echo classification scheme, used to identify and remove...
Citation