Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 8, issue 10 | Copyright
Atmos. Meas. Tech., 8, 4243-4264, 2015
https://doi.org/10.5194/amt-8-4243-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Oct 2015

Research article | 14 Oct 2015

Intercomparison of the comparative reactivity method (CRM) and pump–probe technique for measuring total OH reactivity in an urban environment

R. F. Hansen1,3,a, M. Blocquet4, C. Schoemaecker4, T. Léonardis1,2, N. Locoge1,2, C. Fittschen4, B. Hanoune4, P. S. Stevens3,5, V. Sinha6, and S. Dusanter1,2,4 R. F. Hansen et al.
  • 1Mines Douai, SAGE, 59508 Douai, France
  • 2Université de Lille, Lille, France
  • 3Department of Chemistry, Indiana University, Bloomington, IN, USA
  • 4Université de Lille, PhysicoChimie des Processus de Combustion et de l'Atmosphère (PC2A) UMR 8522 CNRS/Lille 1, Cité scientifique, 59655 Villeneuve d'Ascq Cedex, France
  • 5School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
  • 6Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO, Punjab 140306, India
  • anow at: School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK

Abstract. The investigation of hydroxyl radical (OH) chemistry during intensive field campaigns has led to the development of several techniques dedicated to ambient measurements of total OH reactivity, which is the inverse of the OH lifetime. Three techniques are currently used during field campaigns, including the total OH loss rate method, the pump–probe method, and the comparative reactivity method. However, no formal intercomparison of these techniques has been published so far, and there is a need to ensure that measurements of total OH reactivity are consistent among the different techniques.

An intercomparison of two OH reactivity instruments, one based on the comparative reactivity method (CRM) and the other based on the pump–probe method, was performed in October 2012 in a NOx-rich environment, which is known to be challenging for the CRM technique. This study presents an extensive description of the two instruments, the CRM instrument from Mines Douai (MD-CRM) and the pump–probe instrument from the University of Lille (UL-FAGE), and highlights instrumental issues associated with the two techniques.

It was found that the CRM instrument used in this study underestimates ambient OH reactivity by approximately 20 % due to the photolysis of volatile organic compounds (VOCs) inside the sampling reactor; this value is dependent on the position of the lamp within the reactor. However, this issue can easily be fixed, and the photolysis of VOCs was successfully reduced to a negligible level after this intercomparison campaign. The UL-FAGE instrument may also underestimate ambient OH reactivity due to the difficulty to accurately measure the instrumental zero. It was found that the measurements are likely biased by approximately 2 s-1, due to impurities in humid zero air.

Two weeks of ambient sampling indicate that the measurements performed by the two OH reactivity instruments are in agreement, within the measurement uncertainties for each instrument, for NOx mixing ratios up to 100 ppbv. The CRM technique has hitherto mainly been used in low-NOx environments, i.e. environments with ambient NOx mixing ratios lower than a few ppbv, due to a measurement artifact generated by ambient NO inside the sampling reactor. However, this study shows that this technique can also be used under NOx-rich conditions if a NOx-dependent correction is carefully applied on the OH reactivity measurements.

A full suite of 52 VOCs, NOx, and other inorganic species were monitored during this intercomparison. An investigation of the OH reactivity budget for this urban site suggests that this suite of trace gases can account for the measured total OH reactivity.

Publications Copernicus
Download
Short summary
This paper describes and presents results from a intercomparison, in an environment rich in NOx (i.e., NO+NO2), of two OH reactivity instruments: one based on the comparative reactivity method, and one based on the pump-probe method. Co-located measurements were made of both ambient air and standard mixtures. Ambient OH reactivity values measured by both instruments were found to be in good agreement for ambient NOx mixing ratios as high as 100 ppbv.
This paper describes and presents results from a intercomparison, in an environment rich in NOx...
Citation
Share