Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 8, issue 10
Atmos. Meas. Tech., 8, 4295–4311, 2015
https://doi.org/10.5194/amt-8-4295-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 4295–4311, 2015
https://doi.org/10.5194/amt-8-4295-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Oct 2015

Research article | 14 Oct 2015

A new method of measuring aerosol optical properties from digital twilight photographs

M. Saito and H. Iwabuchi M. Saito and H. Iwabuchi
  • Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan

Abstract. An optimal-estimation algorithm for inferring aerosol optical properties from digital twilight photographs is proposed. The sensitivity of atmospheric components and surface characteristics to brightness and color of twilight sky is investigated, and the results suggest that tropospheric and stratospheric aerosol optical thickness (AOT) are sensitive to condition of the twilight sky. The coarse–fine particle volume ratio is moderately sensitive to the sky condition near the horizon under a clean-atmosphere condition. A radiative transfer model that takes into account a spherical-shell atmosphere, refraction, and multiple scattering is used as a forward model. Error analysis shows that the tropospheric and stratospheric AOT can be retrieved without significant bias. Comparisons with results from other ground-based instruments exhibit reasonable agreement on AOT. A case study suggests that the AOT retrieval method can be applied to atmospheric conditions with varying aerosol vertical profiles and vertically inhomogeneous species in the troposphere.

Publications Copernicus
Download
Short summary
A new algorithm for aerosol retrievals from twilight photographs taken by a digital single reflex-lens camera is developed. A radiative transfer model taking spherical-shell atmosphere, multiple scattering and refraction into account is used as a forward model, and the optimal estimation is used as an inversion calculation to infer the aerosol optical and radiative properties. The AOTs are inferred with small uncertainties and agree very well with that from the skyradiometer.
A new algorithm for aerosol retrievals from twilight photographs taken by a digital single...
Citation