Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 8, issue 1
Atmos. Meas. Tech., 8, 43–55, 2015
https://doi.org/10.5194/amt-8-43-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 43–55, 2015
https://doi.org/10.5194/amt-8-43-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Jan 2015

Research article | 06 Jan 2015

Determination of car on-road black carbon and particle number emission factors and comparison between mobile and stationary measurements

I. Ježek et al.
Related authors  
Black carbon, particle number concentration and nitrogen oxide emission factors of random in-use vehicles measured with the on-road chasing method
I. Ježek, T. Katrašnik, D. Westerdahl, and G. Močnik
Atmos. Chem. Phys., 15, 11011–11026, https://doi.org/10.5194/acp-15-11011-2015,https://doi.org/10.5194/acp-15-11011-2015, 2015
Short summary
Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber
S. M. Platt, I. El Haddad, A. A. Zardini, M. Clairotte, C. Astorga, R. Wolf, J. G. Slowik, B. Temime-Roussel, N. Marchand, I. Ježek, L. Drinovec, G. Močnik, O. Möhler, R. Richter, P. Barmet, F. Bianchi, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 13, 9141–9158, https://doi.org/10.5194/acp-13-9141-2013,https://doi.org/10.5194/acp-13-9141-2013, 2013
Related subject area  
Subject: Aerosols | Technique: In Situ Measurement | Topic: Instruments and Platforms
A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry
Karl D. Froyd, Daniel M. Murphy, Charles A. Brock, Pedro Campuzano-Jost, Jack E. Dibb, Jose-Luis Jimenez, Agnieszka Kupc, Ann M. Middlebrook, Gregory P. Schill, Kenneth L. Thornhill, Christina J. Williamson, James C. Wilson, and Luke D. Ziemba
Atmos. Meas. Tech., 12, 6209–6239, https://doi.org/10.5194/amt-12-6209-2019,https://doi.org/10.5194/amt-12-6209-2019, 2019
Short summary
Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study
Felix Piel, Markus Müller, Tomas Mikoviny, Sally E. Pusede, and Armin Wisthaler
Atmos. Meas. Tech., 12, 5947–5958, https://doi.org/10.5194/amt-12-5947-2019,https://doi.org/10.5194/amt-12-5947-2019, 2019
Short summary
A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical depth – Part 1: Specifications and testing
Eric A. Wendt, Casey W. Quinn, Daniel D. Miller-Lionberg, Jessica Tryner, Christian L'Orange, Bonne Ford, Azer P. Yalin, Jeffrey R. Pierce, Shantanu Jathar, and John Volckens
Atmos. Meas. Tech., 12, 5431–5441, https://doi.org/10.5194/amt-12-5431-2019,https://doi.org/10.5194/amt-12-5431-2019, 2019
Short summary
An extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) for online measurement of atmospheric aerosol particles
Felipe D. Lopez-Hilfiker, Veronika Pospisilova, Wei Huang, Markus Kalberer, Claudia Mohr, Giulia Stefenelli, Joel A. Thornton, Urs Baltensperger, Andre S. H. Prevot, and Jay G. Slowik
Atmos. Meas. Tech., 12, 4867–4886, https://doi.org/10.5194/amt-12-4867-2019,https://doi.org/10.5194/amt-12-4867-2019, 2019
Short summary
Aerosol measurement methods to quantify spore emissions from fungi and cryptogamic covers in the Amazon
Nina Löbs, Cybelli G. G. Barbosa, Sebastian Brill, David Walter, Florian Ditas, Marta de Oliveira Sá, Alessandro C. de Araújo, Leonardo R. de Oliveira, Ricardo H. M. Godoi, Stefan Wolff, Meike Piepenbring, Jürgen Kesselmeier, Paulo Artaxo, Meinrat O. Andreae, Ulrich Pöschl, Christopher Pöhlker, and Bettina Weber
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-238,https://doi.org/10.5194/amt-2019-238, 2019
Revised manuscript accepted for AMT
Short summary
Cited articles  
91/441/EEC: Council directive of 26 June 1991 amending Directive 70/220/EEC on the approximation of the laws of the Member States relating to measures to be taken against air pollution by emissions from motor vehicles, 1991.
98/69/EC: Directive of the European parliament and of the council relating to measures to be taken against air pollution by emissions from motor vehicles and amending Council directive 70/220/EEC, 13 October 1998.
715/2007/EC: Regulation (EC) No 715/2007 of the European parliament and of the council, on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information, 20 June 2007.
2008/50/EC: Directive of the European parliament and of the council on ambient air quality and cleaner air for Europe, 21 May 2008.
Ajtay, D., Weilenmann, M., and Soltic, P.: Towards accurate instantaneous emission models, Atmos. Environ., 39, 2443–2449, https://doi.org/10.1016/j.atmosenv.2004.03.080, 2005.
Publications Copernicus
Download
Short summary
We used two methods - the stationary method and the chasing method - for measuring emission factors (EF) of black carbon and particle number concentration in real driving conditions in a controlled environment. We further developed the data processing for both methods. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions.
We used two methods - the stationary method and the chasing method - for measuring emission...
Citation