Articles | Volume 8, issue 10
https://doi.org/10.5194/amt-8-4329-2015
https://doi.org/10.5194/amt-8-4329-2015
Research article
 | 
15 Oct 2015
Research article |  | 15 Oct 2015

On the relative absorption strengths of water vapour in the blue wavelength range

J. Lampel, D. Pöhler, J. Tschritter, U. Frieß, and U. Platt

Abstract. In recent updates of the HITRAN water vapour H2O spectroscopic compilation covering the blue spectral region (here: 394–480 nm) significant changes for the absorption bands at 416 and 426 nm were reported. In order to investigate the consistency of the different cross-sections calculated from these compilations, H2O vapour column density ratios for different spectral intervals were retrieved from long-path and multi-axis differential optical absorption spectroscopy (DOAS) measurements. We observed a significant improvement of the DOAS evaluation when using the updated HITRAN water vapour absorption cross-sections for the calculation of the reference spectra. In particular the magnitudes of the residual spectra as well as the fit errors were reduced.

However, we also found that the best match between measurement and model is reached when the absorption cross-section of groups of lines are scaled by factors ranging from 0.5 to 1.9, suggesting that the HITRAN water vapour absorption compilation still needs significant corrections. For this spectral region we present correction factors for HITRAN 2009, HITRAN 2012, HITEMP and BT2 derived from field measurements. Additionally, upper limits for water vapour absorption in the UV-A range from 330 to 390 nm are given.

Download
Short summary
In recent updates of the HITRAN water vapour H2O spectroscopic compilation covering the blue spectral region (here 394–-480 nm) significant changes for the absorption bands at 416 and 426 nm were reported. In order to investigate the consistency of the different cross sections calculated from these compilations, H2O vapour column density ratios for different spectral intervals were retrieved from long-path and multi-axis differential optical absorption spectroscopy measurements.