Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 8, 4573-4585, 2015
https://doi.org/10.5194/amt-8-4573-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
02 Nov 2015
Explaining darker deep convective clouds over the western Pacific than over tropical continental convective regions
B.-J. Sohn, M.-J. Choi, and J. Ryu School of Earth and Environmental Sciences, Seoul National University, Seoul, 151-747, Korea
Abstract. This study attempted to explain why deep convective clouds (DCCs) over the western Pacific are generally darker than those found over tropical African and South American land regions. The western Pacific domain was further divided into its land and ocean regions to deduce the general differences in DCC characteristics between convectively active tropical land and ocean regions. DCC in this study is defined as a single-layer cloud whose thickness is greater than 15 km, and it is determined from CloudSat-measured reflectivity profiles. Corresponding MODIS-measured reflectivities at 0.645 μm were examined, along with the analysis of cloud products from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO) measurements.

From an analysis of the four January months of 2007–2010, a distinct difference in ice water path (IWP) between the ocean region of the western Pacific and the three tropical land regions was revealed. Distinct differences in the effective radius between land and ocean were also found. The findings lead to a conclusion that smaller IWP over the western Pacific ocean region than over the tropical land regions, which should be caused by different cloud microphysics between land and ocean, is the main cause of smaller reflectivity there.


Citation: Sohn, B.-J., Choi, M.-J., and Ryu, J.: Explaining darker deep convective clouds over the western Pacific than over tropical continental convective regions, Atmos. Meas. Tech., 8, 4573-4585, https://doi.org/10.5194/amt-8-4573-2015, 2015.
Publications Copernicus
Download
Short summary
This study attempted to explain why deep convective clouds (DCCs) over the western Pacific are generally darker than those found over tropical African and South American land regions over the tropics. It was noted that smaller ice water path of the DCC over the western Pacific is mainly responsible for smaller reflectivity there. Findings further suggest how DCC criteria are set up for selecting the targets for the solar channel calibration.
This study attempted to explain why deep convective clouds (DCCs) over the western Pacific are...
Share