Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
  • CiteScore value: 3.37 CiteScore
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
Volume 8, issue 1 | Copyright
Atmos. Meas. Tech., 8, 471-482, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Jan 2015

Research article | 29 Jan 2015

A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE)

T. Fang1, V. Verma1, H. Guo1, L. E. King1, E. S. Edgerton2, and R. J. Weber1 T. Fang et al.
  • 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
  • 2Atmospheric Research and Analysis, Inc., Cary, NC, USA

Abstract. A variety of methods are used to measure the capability of particulate matter (PM) to catalytically generate reactive oxygen species (ROS) in vivo, also defined as the aerosol oxidative potential. A widely used measure of aerosol oxidative potential is the dithiothreitol (DTT) assay, which monitors the depletion of DTT (a surrogate for cellular antioxidants) as catalyzed by the redox-active species in PM. However, a major constraint in the routine use of the DTT assay for integrating it with large-scale health studies is its labor-intensive and time-consuming protocol. To specifically address this concern, we have developed a semi-automated system for quantifying the oxidative potential of aerosol liquid extracts using the DTT assay. The system, capable of unattended analysis at one sample per hour, has a high analytical precision (coefficient of variation of 15% for positive control, 4% for ambient samples) and reasonably low limit of detection (0.31 nmol min−1). Comparison of the automated approach with the manual method conducted on ambient samples yielded good agreement (slope = 1.08 ± 0.12, r2 = 0.92, N = 9). The system was utilized for the Southeastern Center for Air Pollution & Epidemiology (SCAPE) to generate an extensive data set on DTT activity of ambient particles collected from contrasting environments (urban, roadside, and rural) in the southeastern US. We find that water-soluble PM2.5 DTT activity on a per-air-volume basis was spatially uniform and often well correlated with PM2.5 mass (r = 0.49 to 0.88), suggesting regional sources contributing to the PM oxidative potential in the southeastern US. The correlation may also suggest a mechanistic explanation (oxidative stress) for observed PM2.5 mass-health associations. The heterogeneity in the intrinsic DTT activity (per-PM-mass basis) across seasons indicates variability in the DTT activity associated with aerosols from sources that vary with season. Although developed for the DTT assay, the instrument can also be used to determine oxidative potential with other acellular assays.

Publications Copernicus
Short summary
This work summarizes a newly developed semi-automated system for quantifying the oxidative potential of aerosol aqueous extracts using the dithiothreitol (DTT) assay. 500 sample analyses indicate that DTT activity in the southeast US is likely not dominated by a unique local source, and sources change with season. The unique large data set generated with the technique described in this paper allows new studies on DTT sources and investigating linkages between reactive oxygen species and health.
This work summarizes a newly developed semi-automated system for quantifying the oxidative...