Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
    3.707
  • CiteScore value: 6.3 CiteScore
    6.3
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
Volume 8, issue 11
Atmos. Meas. Tech., 8, 4735–4754, 2015
https://doi.org/10.5194/amt-8-4735-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 4735–4754, 2015
https://doi.org/10.5194/amt-8-4735-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Nov 2015

Research article | 10 Nov 2015

High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

J. P. Lawrence et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Download
Short summary
An airborne spectrometer was used to produce a high spatial resolution (80 x 20 m) map of nitrogen dioxide over Leicester City (UK) and the surrounding countryside. Clear local hotspots due to traffic, industrial activity and power generation are observable, as are comparative reductions over parks and rural areas. A positive temporal gradient was also observed over the 2-hour flight, possibly indicating traffic build-up over time.
An airborne spectrometer was used to produce a high spatial resolution (80 x 20 m) map of...
Citation