Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 8, issue 11
Atmos. Meas. Tech., 8, 4851–4862, 2015
https://doi.org/10.5194/amt-8-4851-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 4851–4862, 2015
https://doi.org/10.5194/amt-8-4851-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Nov 2015

Research article | 19 Nov 2015

An enhanced procedure for measuring organic acids and methyl esters in PM2.5

F. Liu1,2, F. K. Duan1,3, K. B. He1,3,4, Y. L. Ma1,3,4, K. A. Rahn1, and Q. Zhang1,3 F. Liu et al.
  • 1School of Environment, Tsinghua University, Beijing 100084, China
  • 2Research Institute of Chemical Defense, Beijing, China
  • 3State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
  • 4State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Tsinghua University, Beijing 100084, China

Abstract. A solid-phase extraction (SPE) pretreatment procedure allowing organic acids to be separated from methyl esters in fine aerosol has been developed. The procedure first separates the organic acids from fatty acid methyl esters (FAMEs) and other nonacid organic compounds by aminopropyl-based SPE cartridge and then quantifies them by gas chromatography/mass spectrometry. The procedure prevents the fatty acids and dimethyl phthalate from being overestimated, and so allows us to accurately quantify the C4–C11 dicarboxylic acids (DCAs) and the C8–C30 monocarboxylic acids (MCAs). Results for the extraction of DCAs, MCAs, and AMAs in eluate and FAMEs in effluate by SAX and NH2 SPE cartridges exhibited that the NH2 SPE cartridge gave higher extraction efficiency than the SAX cartridge. The recoveries of analytes ranged from 67.5 to 111.3 %, and the RSD ranged from 0.7 to 10.9 %. The resulting correlations between the aliphatic acids and FAMEs suggest that the FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. Through extraction and cleanup using this procedure, 17 aromatic acids in eluate were identified and quantified by gas chromatography/tandem mass spectrometry, including five polycyclic aromatic hydrocarbon (PAH): acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH acids and the dicarboxylic and aromatic acids suggested that the first three acids and 1,8-naphthalic anhydride were secondary atmospheric photochemistry products and the last two mainly primary.

Publications Copernicus
Download
Short summary
We have developed an enhanced solid-phase extraction pretreatment procedure to organic acids separated from methyl esters in fine aerosol. This procedure prevents the fatty acids and dimethyl phthalate from being overestimated. Furthermore, five polycyclic aromatic hydrocarbon acids were quantified, and correlations between the PAH-acids and tracer dicarboxylic and aromatic acids indicated that they came from primary or/and secondary emissions.
We have developed an enhanced solid-phase extraction pretreatment procedure to organic acids...
Citation