Corrigendum to Atmos. Meas. Tech., 8, 4863–4890, 2015
www.atmos-meas-tech.net/8/4863/2015/
doi:10.5194/amt-8-4863-2015-corrigendum
© Author(s) 2016. CC Attribution 3.0 License.

Corrigendum to
“HO\textsubscript{x} radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling” published in Atmos. Meas. Tech., 8, 4863–4890, 2015

Z. Peng1,2, D. A. Day1,2, H. Stark1,2,3, R. Li1,4,5, J. Lee-Taylor1,2, B. B. Palm1,2, W. H. Brune6, and J. L. Jimenez1,2

1Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
2Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
3Aerodyne Research, Inc., Billerica, MA 01821, USA
4Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80309, USA
5Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA
6Department of Meteorology, Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA

Correspondence to: J. L. Jimenez (jose.jimenez@colorado.edu)

Published: 2 May 2016

Due to an oversight in the production process, this article was published with some mistakes in the following equations:

Equation 12 of the original article was incorrectly numbered. Equation 13 of the original article should be Eq. (12), while Eq. (11) represents the entire equation, not only the first line of Eq. (11).

In addition, the author would like to correct two typos on Eqs. (10) and (12).

Original Eq. (10):
\[
\log \text{OH}_{\exp} = 26.89 + \left(-1.7629 - 1.2947 \cdot \text{OHR}_{\text{ext}}^{0.076549} \right. \\
\left. + 0.14469 \cdot \log \text{O}_{3,\text{out}} \cdot \text{OHR}_{\text{ext}}^{0.046} \right) \\
\cdot \log \text{O}_{3,\text{out}} + \log \text{H}_2\text{O}. \quad (10)
\]

Corrected Eq. (10):
\[
\log \text{OH}_{\exp} = 28.89 + \left(-1.7629 - 1.2947 \cdot \text{OHR}_{\text{ext}}^{0.076549} \right. \\
\left. + 0.14469 \cdot \log \text{O}_{3,\text{out}} \cdot \text{OHR}_{\text{ext}}^{0.046} \right) \\
\cdot \log \text{O}_{3,\text{out}} + \log \text{H}_2\text{O}. \quad (10)
\]

Note: the difference between the parameter values in this equation and those in Eq. (4) of Li et al. (2015) is due to the different units of H\textsubscript{2}O in the two articles.

Original Eq. (12):
\[
\log \text{OH}_{\exp} = a - \log (-\log \text{rO}_3) + b \left(\text{OHR}_{\text{ext}} / \text{O}_3,\text{in} \right)^c. \quad (12)
\]

Corrected Eq. (12):
\[
\log \text{OH}_{\exp} = a + \log (-\log \text{rO}_3) + b \left(\text{OHR}_{\text{ext}} / \text{O}_3,\text{in} \right)^c. \quad (12)
\]

This update does not affect the conclusions of the article. We apologize for any inconvenience this may have caused to readers.

References