Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
    3.650
  • CiteScore value: 3.37 CiteScore
    3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
Volume 8, issue 12 | Copyright
Atmos. Meas. Tech., 8, 5289-5299, 2015
https://doi.org/10.5194/amt-8-5289-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Dec 2015

Research article | 18 Dec 2015

Gas adsorption and desorption effects on cylinders and their importance for long-term gas records

M. C. Leuenberger, M. F. Schibig, and P. Nyfeler M. C. Leuenberger et al.
  • Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Switzerland

Abstract. It is well known that gases adsorb on many surfaces, in particular metal surfaces. There are two main forms responsible for these effects (i) physisorption and (ii) chemisorption. Physisorption is associated with lower binding energies in the order of 1–10 kJ mol−1, compared to chemisorption which ranges from 100 to 1000 kJ mol−1. Furthermore, chemisorption only forms monolayers, contrasting physisorption that can form multilayer adsorption. The reverse process is called desorption and follows similar mathematical laws; however, it can be influenced by hysteresis effects. In the present experiment, we investigated the adsorption/desorption phenomena on three steel and three aluminium cylinders containing compressed air in our laboratory and under controlled conditions in a climate chamber, respectively. Our observations from completely decanting one steel and two aluminium cylinders are in agreement with the pressure dependence of physisorption for CO2, CH4, and H2O. The CO2 results for both cylinder types are in excellent agreement with the pressure dependence of a monolayer adsorption model. However, mole fraction changes due to adsorption on aluminium (< 0.05 and 0 ppm for CO2 and H2O) were significantly lower than on steel (< 0.41 ppm and about < 2.5 ppm, respectively). The CO2 amount adsorbed (5.8 × 1019 CO2 molecules) corresponds to about the fivefold monolayer adsorption, indicating that the effective surface exposed for adsorption is significantly larger than the geometric surface area. Adsorption/desorption effects were minimal for CH4 and for CO but require further attention since they were only studied on one aluminium cylinder with a very low mole fraction. In the climate chamber, the cylinders were exposed to temperatures between −10 and +50 °C to determine the corresponding temperature coefficients of adsorption. Again, we found distinctly different values for CO2, ranging from 0.0014 to 0.0184 ppm °C−1 for steel cylinders and −0.0002 to −0.0003 ppm °C−1 for aluminium cylinders. The reversed temperature dependence for aluminium cylinders points to significantly lower desorption energies than for steel cylinders and due to the small values, they might at least partly be influenced by temperature, permeation from/to sealing materials, and gas-consumption-induced pressure changes. Temperature coefficients for CH4, CO, and H2O adsorption were, within their error bands, insignificant. These results do indicate the need for careful selection and usage of gas cylinders for high-precision calibration purposes such as requested in trace gas applications.

Publications Copernicus
Download
Short summary
Adsorption/desorption effects of trace gases in gas cylinders were investigated. Our measurements indicate a rather strong effect on steel cylinders for CO2 that becomes easily visible through enhanced concentrations for low (<20 bars) gas pressure. Much smaller effects are observed for CO and CH4. Significantly smaller effects are measured for all gas species investigated on aluminium cylinders. Careful selection of gas cylinders for high-precision calibration purposes is recommended.
Adsorption/desorption effects of trace gases in gas cylinders were investigated. Our...
Citation
Share