Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 9, 1341-1359, 2016
https://doi.org/10.5194/amt-9-1341-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
31 Mar 2016
Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2
Stefan Metzger1,2, George Burba3, Sean P. Burns4,5, Peter D. Blanken4, Jiahong Li3, Hongyan Luo1,2, and Rommel C. Zulueta1 1National Ecological Observatory Network, Fundamental Instrument Unit, Boulder, Colorado, USA
2University of Colorado, Institute for Arctic and Alpine Research, Boulder, Colorado, USA
3LI-COR Biosciences, Research and Development, Environmental Division, Lincoln, Nebraska, USA
4University of Colorado, Department of Geography, Boulder, Colorado, USA
5National Center for Atmospheric Research, Mesoscale and Microscale Meteorology Laboratory, Boulder, Colorado, USA
Abstract. Several initiatives are currently emerging to observe the exchange of energy and matter between the earth's surface and atmosphere standardized over larger space and time domains. For example, the National Ecological Observatory Network (NEON) and the Integrated Carbon Observing System (ICOS) are set to provide the ability of unbiased ecological inference across ecoclimatic zones and decades by deploying highly scalable and robust instruments and data processing. In the construction of these observatories, enclosed infrared gas analyzers are widely employed for eddy covariance applications. While these sensors represent a substantial improvement compared to their open- and closed-path predecessors, remaining high-frequency attenuation varies with site properties and gas sampling systems, and requires correction. Here, we show that components of the gas sampling system can substantially contribute to such high-frequency attenuation, but their effects can be significantly reduced by careful system design. From laboratory tests we determine the frequency at which signal attenuation reaches 50 % for individual parts of the gas sampling system. For different models of rain caps and particulate filters, this frequency falls into ranges of 2.5–16.5 Hz for CO2, 2.4–14.3 Hz for H2O, and 8.3–21.8 Hz for CO2, 1.4–19.9 Hz for H2O, respectively. A short and thin stainless steel intake tube was found to not limit frequency response, with 50 % attenuation occurring at frequencies well above 10 Hz for both H2O and CO2. From field tests we found that heating the intake tube and particulate filter continuously with 4 W was effective, and reduced the occurrence of problematic relative humidity levels (RH  > 60 %) by 50 % in the infrared gas analyzer cell. No further improvement of H2O frequency response was found for heating in excess of 4 W. These laboratory and field tests were reconciled using resistor–capacitor theory, and NEON's final gas sampling system was developed on this basis. The design consists of the stainless steel intake tube, a pleated mesh particulate filter and a low-volume rain cap in combination with 4 W of heating and insulation. In comparison to the original design, this reduced the high-frequency attenuation for H2O by  ≈ 3∕4, and the remaining cospectral correction did not exceed 3 %, even at high relative humidity (95 %). The standardized design can be used across a wide range of ecoclimates and site layouts, and maximizes practicability due to minimal flow resistance and maintenance needs. Furthermore, due to minimal high-frequency spectral loss, it supports the routine application of adaptive correction procedures, and enables largely automated data processing across sites.

Citation: Metzger, S., Burba, G., Burns, S. P., Blanken, P. D., Li, J., Luo, H., and Zulueta, R. C.: Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2, Atmos. Meas. Tech., 9, 1341-1359, https://doi.org/10.5194/amt-9-1341-2016, 2016.
Publications Copernicus
Short summary
Enclosed infrared gas analyzers utilize a gas sampling system, which can substantially increase spectral corrections for eddy covariance applications. Here, we show that a requirements-based design can reduce high-frequency attenuation for H2O by ≈ 3/4, with the remaining flux correction not exceeding 3 %. The resulting gas sampling system can be used across a wide range of ecoclimates and site layouts, and enables more automated and comparable eddy covariance data processing across sites.
Enclosed infrared gas analyzers utilize a gas sampling system, which can substantially increase...
Share