Articles | Volume 9, issue 4
https://doi.org/10.5194/amt-9-1461-2016
https://doi.org/10.5194/amt-9-1461-2016
Research article
 | 
04 Apr 2016
Research article |  | 04 Apr 2016

A fast SWIR imager for observations of transient features in OH airglow

Patrick Hannawald, Carsten Schmidt, Sabine Wüst, and Michael Bittner

Related authors

Analysis of 2D airglow imager data with respect to dynamics using machine learning
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023,https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Gravity wave instability structures and turbulence from more than 1.5 years of OH* airglow imager observations in Slovenia
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021,https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Observations of OH airglow from ground, aircraft, and satellite: investigation of wave-like structures before a minor stratospheric warming
Sabine Wüst, Carsten Schmidt, Patrick Hannawald, Michael Bittner, Martin G. Mlynczak, and James M. Russell III
Atmos. Chem. Phys., 19, 6401–6418, https://doi.org/10.5194/acp-19-6401-2019,https://doi.org/10.5194/acp-19-6401-2019, 2019
Short summary
Seasonal and intra-diurnal variability of small-scale gravity waves in OH airglow at two Alpine stations
Patrick Hannawald, Carsten Schmidt, René Sedlak, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 12, 457–469, https://doi.org/10.5194/amt-12-457-2019,https://doi.org/10.5194/amt-12-457-2019, 2019
Short summary
High-resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 9, 5955–5963, https://doi.org/10.5194/amt-9-5955-2016,https://doi.org/10.5194/amt-9-5955-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
Directly measuring the power-law exponent and kinetic energy of atmospheric turbulence using coherent Doppler wind lidar
Jinhong Xian, Chao Lu, Xiaoling Lin, Honglong Yang, Ning Zhang, and Li Zhang
Atmos. Meas. Tech., 17, 1837–1850, https://doi.org/10.5194/amt-17-1837-2024,https://doi.org/10.5194/amt-17-1837-2024, 2024
Short summary
3D wind observations with a compact mobile lidar based on tropo- and stratospheric aerosol backscatter
Thorben H. Mense, Josef Höffner, Gerd Baumgarten, Ronald Eixmann, Jan Froh, Alsu Mauer, Alexander Munk, Robin Wing, and Franz-Josef Lübken
Atmos. Meas. Tech., 17, 1665–1677, https://doi.org/10.5194/amt-17-1665-2024,https://doi.org/10.5194/amt-17-1665-2024, 2024
Short summary
A novel infrared imager for studies of hydroxyl and oxygen nightglow emissions in the mesopause above northern Scandinavia
Peter Dalin, Urban Brändström, Johan Kero, Peter Voelger, Takanori Nishiyama, Trond Trondsen, Devin Wyatt, Craig Unick, Vladimir Perminov, Nikolay Pertsev, and Jonas Hedin
Atmos. Meas. Tech., 17, 1561–1576, https://doi.org/10.5194/amt-17-1561-2024,https://doi.org/10.5194/amt-17-1561-2024, 2024
Short summary
Absolute radiance calibration in the UV and visible spectral range using atmospheric observations during twilight
Thomas Wagner and Jānis Puķīte
Atmos. Meas. Tech., 17, 277–297, https://doi.org/10.5194/amt-17-277-2024,https://doi.org/10.5194/amt-17-277-2024, 2024
Short summary
Measurement uncertainties of scanning microwave radiometers and their influence on temperature profiling
Tobias Böck, Bernhard Pospichal, and Ulrich Löhnert
Atmos. Meas. Tech., 17, 219–233, https://doi.org/10.5194/amt-17-219-2024,https://doi.org/10.5194/amt-17-219-2024, 2024
Short summary

Cited articles

Adams, G. W., Peterson, A. W., Brosnahan, J. W., and Neuschaefer, J. W.: Radar and optical observations of mesospheric wave activity during the lunar eclipse of 6 July 1982, J. Atmos. Terr. Phys., 50, 11–17, 19–20, https://doi.org/10.1016/0021-9169(88)90003-7, 1988.
Baker, D. J. and Stair Jr., A. T.: Rocket Measurements of the Altitude Distributions of the Hydroxyl Airglow, Physica Scripta, 37, 611–622, 1988.
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noel, S., and Rozanov, V. V.: SCIAMACHY: Mission Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999.
Chu, X., Gardner, C. S., and Franke, S. J.: Nocturnal thermal structure of the mesosphere and lower thermosphere region at Maui, Hawaii (20.7°N), and Starfire Optical Range, New Mexico (35° N), J. Geophys. Res., 110, D09S03, https://doi.org/10.1029/2004JD004891, 2005.
Dunker, T., Hoppe, U., Feng, W., Plane, J. M., and Marsh, D. R.: Mesospheric temperatures and sodium properties measured with the ALOMAR Na lidar compared with WACCM, J. Atmos. Sol.-Terr. Phy., 127, 111–119, https://doi.org/10.1016/j.jastp.2015.01.003, 2015.
Download
Short summary
This paper presents a ground-based, short-wave infrared camera system for measurements of the OH airglow originating in the middle atmosphere. The camera has a high temporal and spatial resolution of 0.5 s and 200 m (at 90 km height), which allows for detailed observations of atmospheric waves and other transient phenomena. Details regarding the instrument, calibration and preprocessing are discussed exemplarily for an event of two superposing gravity waves with associated instability structures.