Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 4
Atmos. Meas. Tech., 9, 1859–1869, 2016
https://doi.org/10.5194/amt-9-1859-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 1859–1869, 2016
https://doi.org/10.5194/amt-9-1859-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Apr 2016

Research article | 28 Apr 2016

Bayesian statistical ionospheric tomography improved by incorporating ionosonde measurements

Johannes Norberg et al.
Data sets

Dynasonde Database EISCAT http://dynserv.eiscat.uit.no/DD/Iono_form.php

International Reference Ionosphere - IRI-2007 Virtual Ionosphere, Thermosphere, Mesosphere Observatory (VITMO) http://omniweb.gsfc.nasa.gov/vitmo/iri_vitmo.html

Publications Copernicus
Download
Short summary
We validate 2-D ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. The method is based on Bayesian statistical inversion. We employ ionosonde measurements for the choice of the prior distribution parameters and use a sparse matrix approximation for the computations. This results in a computationally efficient tomography algorithm with clear probabilistic interpretation. We find that ionosonde measurements improve the reconstruction significantly.
We validate 2-D ionospheric tomography reconstructions against EISCAT incoherent scatter radar...
Citation