Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
    3.650
  • CiteScore value: 3.37 CiteScore
    3.37
  • SNIP value: 1.253 SNIP 1.253
  • IPP value: 3.29 IPP 3.29
  • SJR value: 1.869 SJR 1.869
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
  • h5-index value: 47 h5-index 47
Volume 9, issue 5
Atmos. Meas. Tech., 9, 1961-1980, 2016
https://doi.org/10.5194/amt-9-1961-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 1961-1980, 2016
https://doi.org/10.5194/amt-9-1961-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 May 2016

Research article | 03 May 2016

Methane cross-validation between three Fourier transform spectrometers: SCISAT ACE-FTS, GOSAT TANSO-FTS, and ground-based FTS measurements in the Canadian high Arctic

Gerrit Holl et al.
Related authors  
Simulating the effects of mid- to upper-tropospheric clouds on microwave emissions in EC-Earth using COSP
M. S. Johnston, G. Holl, J. Hocking, S. J. Cooper, and D. Chen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-11753-2015,https://doi.org/10.5194/amtd-8-11753-2015, 2015
Publication in AMT not foreseen
Related subject area  
Subject: Gases | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Validation of Solar Occultation for Ice Experiment (SOFIE) nitric oxide measurements
Mark E. Hervig, Benjamin T. Marshall, Scott M. Bailey, David E. Siskind, James M. Russell III, Charles G. Bardeen, Kaley A. Walker, and Bernd Funke
Atmos. Meas. Tech., 12, 3111-3121, https://doi.org/10.5194/amt-12-3111-2019,https://doi.org/10.5194/amt-12-3111-2019, 2019
Short summary
The SPARC water vapour assessment II: profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites
Stefan Lossow, Farahnaz Khosrawi, Michael Kiefer, Kaley A. Walker, Jean-Loup Bertaux, Laurent Blanot, James M. Russell, Ellis E. Remsberg, John C. Gille, Takafumi Sugita, Christopher E. Sioris, Bianca M. Dinelli, Enzo Papandrea, Piera Raspollini, Maya García-Comas, Gabriele P. Stiller, Thomas von Clarmann, Anu Dudhia, William G. Read, Gerald E. Nedoluha, Robert P. Damadeo, Joseph M. Zawodny, Katja Weigel, Alexei Rozanov, Faiza Azam, Klaus Bramstedt, Stefan Noël, John P. Burrows, Hideo Sagawa, Yasuko Kasai, Joachim Urban, Patrick Eriksson, Donal P. Murtagh, Mark E. Hervig, Charlotta Högberg, Dale F. Hurst, and Karen H. Rosenlof
Atmos. Meas. Tech., 12, 2693-2732, https://doi.org/10.5194/amt-12-2693-2019,https://doi.org/10.5194/amt-12-2693-2019, 2019
Potential improvements in global carbon flux estimates from a network of laser heterodyne radiometer measurements of column carbon dioxide
Paul I. Palmer, Emily L. Wilson, Geronimo L. Villanueva, Giuliano Liuzzi, Liang Feng, Anthony J. DiGregorio, Jianping Mao, Lesley Ott, and Bryan Duncan
Atmos. Meas. Tech., 12, 2579-2594, https://doi.org/10.5194/amt-12-2579-2019,https://doi.org/10.5194/amt-12-2579-2019, 2019
Short summary
OMI total bromine monoxide (OMBRO) data product: algorithm, retrieval and measurement comparisons
Raid M. Suleiman, Kelly Chance, Xiong Liu, Gonzalo González Abad, Thomas P. Kurosu, Francois Hendrick, and Nicolas Theys
Atmos. Meas. Tech., 12, 2067-2084, https://doi.org/10.5194/amt-12-2067-2019,https://doi.org/10.5194/amt-12-2067-2019, 2019
Short summary
Assessment of the total precipitable water from a sun photometer, microwave radiometer and radiosondes at a continental site in southeastern Europe
Konstantinos Fragkos, Bogdan Antonescu, David M. Giles, Dragoş Ene, Mihai Boldeanu, Georgios A. Efstathiou, Livio Belegante, and Doina Nicolae
Atmos. Meas. Tech., 12, 1979-1997, https://doi.org/10.5194/amt-12-1979-2019,https://doi.org/10.5194/amt-12-1979-2019, 2019
Short summary
Cited articles  
Amante, C. and Eakins, B.: ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, Tech. rep., NOAA NESDIS NGDC, Boulder, CO, USA, 2009.
Batchelor, R. L., Strong, K., Lindenmaier, R., Mittermeier, R. L., Fast, H., Drummond, J. R., and Fogal, P. F.: A new Bruker IFS 125HR FTIR Spectrometer for the polar environment atmospheric research laboratory at Eureka, Nunavut, Canada: measurements and comparison with the existing Bomem DA8 spectrometer, J. Atmos. Ocean. Tech., 26, 1328–1340, https://doi.org/10.1175/2009JTECHA1215.1, 2009.
Boone, C. D., Nassar, R., Walker, K. A., Rochon, Y., McLeod, S. D., Rinsland, C. P., and Bernath, P. F.: Retrievals for the Atmospheric Chemistry Experiment Fourier-Transform Spectrometer, Appl. Optics, 44, 7218–7231, 2005.
Boone, C. D., Walker, K. A., and Bernath, P. F.: Version 3 retrievals for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), in: The Atmospheric Chemistry Experiment ACE at 10: A Solar Occultation Anthology, edited by: Bernath, P. F., A. Deepak Publishing, Hampton, Virginia, USA, 103–127, 2013.
Publications Copernicus
Download
Short summary
Methane is a powerful greenhouse gas, and we need to measure it globally with satellite instruments. We compare measurements from two satellites with measurements from the ground in Eureka, Nunavut, Canada to assess their different strengths and weaknesses. The differences between measurements are discussed and assessed considering the details of each measurement technique and processing. Recommendations are provided for utilization of these data sets for monitoring methane in the high Arctic.
Methane is a powerful greenhouse gas, and we need to measure it globally with satellite...
Citation