Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 5
Atmos. Meas. Tech., 9, 2077–2092, 2016
https://doi.org/10.5194/amt-9-2077-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 2077–2092, 2016
https://doi.org/10.5194/amt-9-2077-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 May 2016

Research article | 11 May 2016

Polarimetric remote sensing in oxygen A and B bands: sensitivity study and information content analysis for vertical profile of aerosols

Shouguo Ding1,a, Jun Wang1, and Xiaoguang Xu1 Shouguo Ding et al.
  • 1Department of Earth and Atmospheric Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA
  • anow at: Earth Resources Technological Inc., Laurel, MD 20707, USA

Abstract. Theoretical analysis is conducted to reveal the information content of aerosol vertical profile in space-borne measurements of the backscattered radiance and degree of linear polarization (DOLP) in oxygen (O2) A and B bands. Assuming a quasi-Gaussian shape for aerosol vertical profile characterized by peak height H and half width γ (at half maximum), the Unified Linearized Vector Radiative Transfer Model (UNL-VRTM) is used to simulate the Stokes four-vector elements of upwelling radiation at the top of atmosphere (TOA) and their Jacobians with respect to H and γ. Calculations for different aerosol types and different combinations of H and γ values show that the wide range of gas absorption optical depth in O2 A and B band enables the sensitivity of backscattered DOLP and radiance at TOA to the aerosol layer at different altitudes. Quantitatively, DOLP in O2 A and B bands is found to be more sensitive to H and γ than radiance, especially over the bright surfaces (with large visible reflectance). In many O2 absorption wavelengths, the degree of freedom of signal (DFS) for retrieving H (or γ) generally increases with H (and γ) and can be close to unity in many cases, assuming that the composite uncertainty from surface and aerosol scattering properties as well as measurements is less than 5 %. Further analysis demonstrates that DFS needed for simultaneous retrieval of H and γ can be obtained from a combined use of DOLP measurements at  ∼ 10–100 O2 A and B absorption wavelengths (or channels), depending on the specific values of H. The higher the aerosol layer, the fewer number of channels for DOLP measurements in O2 A and B bands are needed for characterizing H and γ. Future hyperspectral measurements of DOLP in O2 A and B bands are needed to continue studying their potential and their combination with radiance and DOLP in atmospheric window channels for retrieving the vertical profiles of aerosols, especially highly scattering aerosols, over land.

Publications Copernicus
Download
Short summary
Knowledge on the vertical distribution of aerosols in the atmospheric is important for studying aerosol impacts on air quality and climate change. The polarization measurements in O2 A and B bands is shown here theoretically to have rich information for characterizing aerosol vertical profile over land. This paper presents a passive remote sensing technique supplementary to the existing technique to retrieve aerosol vertical distribution over land from space.
Knowledge on the vertical distribution of aerosols in the atmospheric is important for studying...
Citation