Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
    3.650
  • CiteScore value: 3.37 CiteScore
    3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
Volume 9, issue 5
Atmos. Meas. Tech., 9, 2253-2265, 2016
https://doi.org/10.5194/amt-9-2253-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 2253-2265, 2016
https://doi.org/10.5194/amt-9-2253-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 May 2016

Research article | 23 May 2016

Retrieving atmospheric turbulence information from regular commercial aircraft using Mode-S and ADS-B

Jacek M. Kopeć et al.
Related authors  
Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe
Guergana Guerova, Jonathan Jones, Jan Douša, Galina Dick, Siebren de Haan, Eric Pottiaux, Olivier Bock, Rosa Pacione, Gunnar Elgered, Henrik Vedel, and Michael Bender
Atmos. Meas. Tech., 9, 5385-5406, https://doi.org/10.5194/amt-9-5385-2016,https://doi.org/10.5194/amt-9-5385-2016, 2016
Short summary
Estimates of Mode-S EHS aircraft-derived wind observation errors using triple collocation
Siebren de Haan
Atmos. Meas. Tech., 9, 4141-4150, https://doi.org/10.5194/amt-9-4141-2016,https://doi.org/10.5194/amt-9-4141-2016, 2016
Short summary
High-resolution measurement of cloud microphysics and turbulence at a mountaintop station
H. Siebert, R. A. Shaw, J. Ditas, T. Schmeissner, S. P. Malinowski, E. Bodenschatz, and H. Xu
Atmos. Meas. Tech., 8, 3219-3228, https://doi.org/10.5194/amt-8-3219-2015,https://doi.org/10.5194/amt-8-3219-2015, 2015
Short summary
Related subject area  
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Empirical high-resolution wind field and gust model in mountainous and hilly terrain based on the dense WegenerNet station networks
Christoph Schlager, Gottfried Kirchengast, and Juergen Fuchsberger
Atmos. Meas. Tech., 11, 5607-5627, https://doi.org/10.5194/amt-11-5607-2018,https://doi.org/10.5194/amt-11-5607-2018, 2018
Short summary
Performance of the FMI cosine error correction method for the Brewer spectral UV measurements
Kaisa Lakkala, Antti Arola, Julian Gröbner, Sergio Fabian León-Luis, Alberto Redondas, Stelios Kazadzis, Tomi Karppinen, Juha Matti Karhu, Luca Egli, Anu Heikkilä, Tapani Koskela, Antonio Serrano, and José Manuel Vilaplana
Atmos. Meas. Tech., 11, 5167-5180, https://doi.org/10.5194/amt-11-5167-2018,https://doi.org/10.5194/amt-11-5167-2018, 2018
Short summary
Computational efficiency for the surface renewal method
Jason Kelley and Chad Higgins
Atmos. Meas. Tech., 11, 2151-2158, https://doi.org/10.5194/amt-11-2151-2018,https://doi.org/10.5194/amt-11-2151-2018, 2018
Short summary
Raindrop fall velocities from an optical array probe and 2-D video disdrometer
Viswanathan Bringi, Merhala Thurai, and Darrel Baumgardner
Atmos. Meas. Tech., 11, 1377-1384, https://doi.org/10.5194/amt-11-1377-2018,https://doi.org/10.5194/amt-11-1377-2018, 2018
Short summary
Novel approaches to estimating the turbulent kinetic energy dissipation rate from low- and moderate-resolution velocity fluctuation time series
Marta Wacławczyk, Yong-Feng Ma, Jacek M. Kopeć, and Szymon P. Malinowski
Atmos. Meas. Tech., 10, 4573-4585, https://doi.org/10.5194/amt-10-4573-2017,https://doi.org/10.5194/amt-10-4573-2017, 2017
Short summary
Cited articles  
Cho, J. Y. N., Newell, R. E., Anderson, B. E., Barrick, J. D. W., and Thornhill, K. L.: Characterizations of tropospheric turbulence and stability layers from aircraft observations, J. Geophys. Res., 108, 8784, https://doi.org/10.1029/2002JD002820, 2003.
Cornman, L. B., Morse, C. S., and Cunning, G.: Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements, J. Aircraft, 32, 171–177, https://doi.org/10.2514/3.46697, 1995.
Drüe, C., Deimel, S., and Hoff, A.: A low-cost approach to derive upper-air wind measurements from ADS-B, 13th EMS Annual Meeting, Reading, UK, 9–13 September 2013, available at: http://presentations.copernicus.org/EMS2013-702_presentation.pdf (last access: 21 August 2015), 2013.
Frehlich, R. and Sharman, R.: Climatology of velocity and tempera-ture turbulence statistics determined from rawinsonde and ACARS/AMDAR data, J. Appl. Meteorol. Clim., 49, 1149–1169, https://doi.org/10.1175/2010JAMC2196.1, 2010.
Gill, P. G. and Buchanan, P.: An ensemble based turbulence forecasting system, Meteorol. Appl., 21, 12–19, https://doi.org/10.1002/met.1373, 2014.
Publications Copernicus
Download
Short summary
This paper is presenting a feasibility study focused on methods of estimating the turbulence intensity based on a class of navigational messages routinely broadcast by the commercial aircraft (known as ADS-B and Mode-S). Using this kind of information could have potentially significant impact on aviation safety. Three methods have been investigated.
This paper is presenting a feasibility study focused on methods of estimating the turbulence...
Citation
Share