Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 9, issue 5 | Copyright
Atmos. Meas. Tech., 9, 2381-2391, 2016
https://doi.org/10.5194/amt-9-2381-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 31 May 2016

Research article | 31 May 2016

Rugged optical mirrors for Fourier transform spectrometers operated in harsh environments

Dietrich G. Feist1, Sabrina G. Arnold1, Frank Hase2, and Dirk Ponge3 Dietrich G. Feist et al.
  • 1Max Planck Institute for Biogeochemistry (MPI-BGC), Jena, Germany
  • 2Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe, Germany
  • 3Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany

Abstract. The Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC) operate a number of Fourier transform spectrometers (FTSs) that measure trace gases in the atmosphere by observing solar spectra. To guide the sunlight into the FTS, a solar tracker has to be placed outside. This device needs high-quality optical mirrors with good reflectance in the near and mid-infrared.

More and more FTS stations are operated in remote locations with harsh environments. Optical mirrors are usually made for laboratory conditions and might not last very long there. At the TCCON site on Ascension Island which is operated by the Max Planck Institute for Biogeochemistry (MPI-BGC), several mirrors from different optical manufacturers were destroyed within weeks.

To continue operation, the MPI-BGC had to develop rugged mirrors that could sustain the harsh conditions for months or even years. While commercially available mirrors are typically made from a substrate covered with a thin reflective coating, these rugged mirrors were made from stainless steel with no additional coating. Except for their lower reflectance (which can easily be compensated for), their optical properties are comparable to existing mirrors. However, their rugged design makes them mostly immune to corrosion and scratching. Unlike most coated mirrors, they can also be cleaned easily.

Publications Copernicus
Download
Short summary
Optical equipment is usually not made for harsh environments. At our atmospheric observation site on Ascension Island, commercially available optical mirrors were destroyed within weeks after being installed outside. To be able to continue our observations, we had to develop rugged optical mirrors that are able to sustain sea salt spray, volcanic dust, and regular cleaning without loosing their reflectivity and without adverse effects on the retrieval quality.
Optical equipment is usually not made for harsh environments. At our atmospheric observation...
Citation
Share