Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 6
Atmos. Meas. Tech., 9, 2463–2482, 2016
https://doi.org/10.5194/amt-9-2463-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 2463–2482, 2016
https://doi.org/10.5194/amt-9-2463-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Jun 2016

Research article | 03 Jun 2016

Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites

Aaron R. Naeger et al.
Related authors  
The identification and tracking of volcanic ash using the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI)
A. R. Naeger and S. A. Christopher
Atmos. Meas. Tech., 7, 581–597, https://doi.org/10.5194/amt-7-581-2014,https://doi.org/10.5194/amt-7-581-2014, 2014
Related subject area  
Subject: Aerosols | Technique: Remote Sensing | Topic: Instruments and Platforms
Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar
Chong Wang, Mingjiao Jia, Haiyun Xia, Yunbin Wu, Tianwen Wei, Xiang Shang, Chengyun Yang, Xianghui Xue, and Xiankang Dou
Atmos. Meas. Tech., 12, 3303–3315, https://doi.org/10.5194/amt-12-3303-2019,https://doi.org/10.5194/amt-12-3303-2019, 2019
Short summary
Monitoring aerosols over Europe: an assessment of the potential benefit of assimilating the VIS04 measurements from the future MTG/FCI geostationary imager
Maxence Descheemaecker, Matthieu Plu, Virginie Marécal, Marine Claeyman, Francis Olivier, Youva Aoun, Philippe Blanc, Lucien Wald, Jonathan Guth, Bojan Sič, Jérôme Vidot, Andrea Piacentini, and Béatrice Josse
Atmos. Meas. Tech., 12, 1251–1275, https://doi.org/10.5194/amt-12-1251-2019,https://doi.org/10.5194/amt-12-1251-2019, 2019
Short summary
The impact of MISR-derived injection height initialization on wildfire and volcanic plume dispersion in the HYSPLIT model
Charles J. Vernon, Ryan Bolt, Timothy Canty, and Ralph A. Kahn
Atmos. Meas. Tech., 11, 6289–6307, https://doi.org/10.5194/amt-11-6289-2018,https://doi.org/10.5194/amt-11-6289-2018, 2018
Short summary
The instrument constant of sky radiometers (POM-02) – Part 1: Calibration constant
Akihiro Uchiyama, Tsuneo Matsunaga, and Akihiro Yamazaki
Atmos. Meas. Tech., 11, 5363–5388, https://doi.org/10.5194/amt-11-5363-2018,https://doi.org/10.5194/amt-11-5363-2018, 2018
Short summary
The instrument constant of sky radiometers (POM-02) – Part 2: Solid view angle
Akihiro Uchiyama, Tsuneo Matsunaga, and Akihiro Yamazaki
Atmos. Meas. Tech., 11, 5389–5402, https://doi.org/10.5194/amt-11-5389-2018,https://doi.org/10.5194/amt-11-5389-2018, 2018
Short summary
Cited articles  
Ackerman, S., Strabala, K., Menzel, P., Frey, R., Moeller, C., Gumley, L., Baum, B., Seemann, S. W., and Zhang, H.: Discriminating clear-sky from cloud with MODIS: Algorithm theoretical basis document (MOD35), version 5.0, NASA Goddard Space Flight Cent., Greenbelt, MD, USA, 2006.
Ackerman, S. A.: Remote sensing aerosols using satellite infrared observations, J. Geophys. Res., 102, 17069–17079, 1997.
Ackerman, S. A., Holz, R. E., Frey, R., Eloranta, E. W., Maddux, B. C., and McGill, M.: Cloud detection with MODIS. Part II: validation, J. Atmos. Ocean. Tech., 25, 1073–1086, 2008.
Al-Saadi, J., Szykman, J., Pierce, B. R., Kittaka, C., Neil, D., Chu, D. A., Remer, L., Gumley, L., Prins, E., Weinstock, L., MacDonald, C., Wayland, R., Dimmick, F., and Fishman, J.: Improving national air quality forecasts with satellite aerosol observations, B. Am. Meteorol. Soc., 86, 1249–1261, https://doi.org/10.1175/BAMS-86-9-1249, 2005.
ARL: HYSPLIT Trajectory Model, available at: http://ready. arl.noaa.gov/HYSPLIT.php, last access: March 2016.
Publications Copernicus
Download
Short summary
In this study, we merge aerosol information from multiple satellite sensors on board low-earth orbiting (LEO) and geostationary (GEO) platforms in order to provide a more comprehensive understanding of the spatial distribution of aerosols compared to when only using single sensors as is commonly done. Our results show that merging aerosol information from LEO and GEO platforms can be very useful, which paves the way for applications to the more advanced next-generation of satellites.
In this study, we merge aerosol information from multiple satellite sensors on board low-earth...
Citation