Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 1
Atmos. Meas. Tech., 9, 249–261, 2016
https://doi.org/10.5194/amt-9-249-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: GOME-2: calibration, algorithms, data products and...

Atmos. Meas. Tech., 9, 249–261, 2016
https://doi.org/10.5194/amt-9-249-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Jan 2016

Research article | 27 Jan 2016

Comparison of GOME-2/Metop-A ozone profiles with GOMOS, OSIRIS and MLS measurements

A. Kauppi et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Download
Short summary
This paper presents a comparison of operational vertical ozone profiles retrieved by OPERA algorithm from the GOME-2 measurements on board Metop-A with space borne high-vertical-resolution ozone profiles by GOMOS, OSIRIS and MLS. The overall agreement of ozone profiles from GOME-2 and reference instruments is within 15 % below 35–40 km depending on latitude. The GOME-2 ozone profiles from non-degradation corrected radiances have a tendency to underestimate the ozone concentration above 30 km.
This paper presents a comparison of operational vertical ozone profiles retrieved by OPERA...
Citation