Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 6
Atmos. Meas. Tech., 9, 2535–2544, 2016
https://doi.org/10.5194/amt-9-2535-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 2535–2544, 2016
https://doi.org/10.5194/amt-9-2535-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Jun 2016

Research article | 09 Jun 2016

Return glider radiosonde for in situ upper-air research measurements

Andreas Kräuchi and Rolf Philipona
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Download
Short summary
New radiosonde instruments for humidity-, radiation- and gas-profile measurements were introduced in recent years for atmospheric research and climate monitoring. Such instruments are intended to be reused on multiple flights. Here we introduce the return glider radiosonde (RGR), which enables flying and retrieving valuable in situ upper-air instruments. The RGR is lifted with weather balloons to a preset altitude, and a built-in autopilot flies the glider autonomously back to the launch site.
New radiosonde instruments for humidity-, radiation- and gas-profile measurements were...
Citation