Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 6
Atmos. Meas. Tech., 9, 2689–2707, 2016
https://doi.org/10.5194/amt-9-2689-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 2689–2707, 2016
https://doi.org/10.5194/amt-9-2689-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Jun 2016

Research article | 28 Jun 2016

Increasing the accuracy and temporal resolution of two-filter radon–222 measurements by correcting for the instrument response

Alan D. Griffiths et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Download
Short summary
Surface-based two-filter radon detectors monitor the ambient concentration of atmospheric radon-222, a natural tracer of mixing and transport. They are sensitive, but respond slowly to ambient changes in radon concentration. In this paper, a deconvolution method is used to successfully correct observations for the instrument response. Case studies demonstrate that it is beneficial, sometimes necessary, to account for the detector response, especially when studying near-surface mixing.
Surface-based two-filter radon detectors monitor the ambient concentration of atmospheric...
Citation