Articles | Volume 9, issue 1
https://doi.org/10.5194/amt-9-281-2016
https://doi.org/10.5194/amt-9-281-2016
Research article
 | 
27 Jan 2016
Research article |  | 27 Jan 2016

Characterization of downwelling radiance measured from a ground-based microwave radiometer using numerical weather prediction model data

M.-H. Ahn, H. Y. Won, D. Han, Y.-H. Kim, and J.-C. Ha

Related authors

Spectral replacement using machine learning methods for continuous mapping of the Geostationary Environment Monitoring Spectrometer (GEMS)
Yeeun Lee, Myoung-Hwan Ahn, Mina Kang, and Mijin Eo
Atmos. Meas. Tech., 16, 153–168, https://doi.org/10.5194/amt-16-153-2023,https://doi.org/10.5194/amt-16-153-2023, 2023
Short summary
RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability
Domenico Cimini, James Hocking, Francesco De Angelis, Angela Cersosimo, Francesco Di Paola, Donatello Gallucci, Sabrina Gentile, Edoardo Geraldi, Salvatore Larosa, Saverio Nilo, Filomena Romano, Elisabetta Ricciardelli, Ermann Ripepi, Mariassunta Viggiano, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Pauline Martinet, Yun Young Song, Myoung Hwan Ahn, and Philip W. Rosenkranz
Geosci. Model Dev., 12, 1833–1845, https://doi.org/10.5194/gmd-12-1833-2019,https://doi.org/10.5194/gmd-12-1833-2019, 2019
Short summary
A cloud detection algorithm using the downwelling infrared radiance measured by an infrared pyrometer of the ground-based microwave radiometer
M.-H. Ahn, D. Han, H. Y. Won, and V. Morris
Atmos. Meas. Tech., 8, 553–566, https://doi.org/10.5194/amt-8-553-2015,https://doi.org/10.5194/amt-8-553-2015, 2015
Short summary
Introduction of the in-orbit test and its performance for the first meteorological imager of the Communication, Ocean, and Meteorological Satellite
D. H. Kim and M. H. Ahn
Atmos. Meas. Tech., 7, 2471–2485, https://doi.org/10.5194/amt-7-2471-2014,https://doi.org/10.5194/amt-7-2471-2014, 2014

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
Directly measuring the power-law exponent and kinetic energy of atmospheric turbulence using coherent Doppler wind lidar
Jinhong Xian, Chao Lu, Xiaoling Lin, Honglong Yang, Ning Zhang, and Li Zhang
Atmos. Meas. Tech., 17, 1837–1850, https://doi.org/10.5194/amt-17-1837-2024,https://doi.org/10.5194/amt-17-1837-2024, 2024
Short summary
3D wind observations with a compact mobile lidar based on tropo- and stratospheric aerosol backscatter
Thorben H. Mense, Josef Höffner, Gerd Baumgarten, Ronald Eixmann, Jan Froh, Alsu Mauer, Alexander Munk, Robin Wing, and Franz-Josef Lübken
Atmos. Meas. Tech., 17, 1665–1677, https://doi.org/10.5194/amt-17-1665-2024,https://doi.org/10.5194/amt-17-1665-2024, 2024
Short summary
A novel infrared imager for studies of hydroxyl and oxygen nightglow emissions in the mesopause above northern Scandinavia
Peter Dalin, Urban Brändström, Johan Kero, Peter Voelger, Takanori Nishiyama, Trond Trondsen, Devin Wyatt, Craig Unick, Vladimir Perminov, Nikolay Pertsev, and Jonas Hedin
Atmos. Meas. Tech., 17, 1561–1576, https://doi.org/10.5194/amt-17-1561-2024,https://doi.org/10.5194/amt-17-1561-2024, 2024
Short summary
Absolute radiance calibration in the UV and visible spectral range using atmospheric observations during twilight
Thomas Wagner and Jānis Puķīte
Atmos. Meas. Tech., 17, 277–297, https://doi.org/10.5194/amt-17-277-2024,https://doi.org/10.5194/amt-17-277-2024, 2024
Short summary
Measurement uncertainties of scanning microwave radiometers and their influence on temperature profiling
Tobias Böck, Bernhard Pospichal, and Ulrich Löhnert
Atmos. Meas. Tech., 17, 219–233, https://doi.org/10.5194/amt-17-219-2024,https://doi.org/10.5194/amt-17-219-2024, 2024
Short summary

Cited articles

Ahn, M.-H., Han, D., Won, H. Y., and Morris, V.: A cloud detection algorithm using the downwelling infrared radiance measured by an infrared pyrometer of the ground-based microwave radiometer, Atmos. Meas. Tech., 8, 553–566, https://doi.org/10.5194/amt-8-553-2015, 2015a.
Ahn, M.-H., Lee, S. J., and Kim, D.: Estimation of uncertainties in the spectral response function of the water vapor channel of a meteorological imager, Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Proc. SPIE 9535, https://doi.org/10.1117/12.2192518, 2015b.
Candlish, L. M., Raddatz, R. L., Asplin, M. G., and Barber, D. G.: Atmospheric temperature and absolute humidity profiles over the Beaufort Sea and Amundsen Gulf from a microwave radiometer, J. Atmos. Ocean. Tech., 29, 1182–1201, 2012.
Cadeddu, M. P. and Turner, D. D.: Evaluation of water permittivity models from ground-based observations of cold clouds at frequencies between 23 and 170 GHz, IEEE T. Geosci. Remote, 49, 2999–3008, 2011.
Cadeddu, M. P., Peckham, G. E., and Gaffard, C.: The vertical resolution of ground-based microwave radiometers analyzed through a multiresolution wavelet technique, IEEE Trans. Geo. Remote Sens., 40, 531–540, 2002.
Download
Short summary
A process to characterize a ground-based microwave radiometer by comparing measured radiance with a reference data, prepared by the radiative transfer simulation with the input of temperature and humidity profiles from NWP model is introduced. When the data affected by clouds and erroneous absolute calibration is compared, the data show a better than 0.97 and 0.5 K of regression coefficient and bias, respectively. However, there is unresolved discrepancy of about 2 K at the lower frequencies.