Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 7
Atmos. Meas. Tech., 9, 3131–3144, 2016
https://doi.org/10.5194/amt-9-3131-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 3131–3144, 2016
https://doi.org/10.5194/amt-9-3131-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 20 Jul 2016

Research article | 20 Jul 2016

PHIPS–HALO: the airborne Particle Habit Imaging and Polar Scattering probe – Part 1: Design and operation

Ahmed Abdelmonem1, Emma Järvinen1, Denis Duft1, Edwin Hirst2, Steffen Vogt1, Thomas Leisner1, and Martin Schnaiter1 Ahmed Abdelmonem et al.
  • 1Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
  • 2Centre for Atmospheric and Instrumentation Research, University of Hertfordshire, Hatfield, AL10 9AB, UK

Abstract. The number and shape of ice crystals present in mixed-phase and ice clouds influence the radiation properties, precipitation occurrence and lifetime of these clouds. Since clouds play a major role in the climate system, influencing the energy budget by scattering sunlight and absorbing heat radiation from the earth, it is necessary to investigate the optical and microphysical properties of cloud particles particularly in situ. The relationship between the microphysics and the single scattering properties of cloud particles is usually obtained by modelling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. There is a demand to obtain both information correspondently and simultaneously for individual cloud particles in their natural environment. For evaluating the average scattering phase function as a function of ice particle habit and crystal complexity, in situ measurements are required. To this end we have developed a novel airborne optical sensor (PHIPS-HALO) to measure the optical properties and the corresponding microphysical parameters of individual cloud particles simultaneously. PHIPS-HALO has been tested in the AIDA cloud simulation chamber and deployed in mountain stations as well as research aircraft (HALO and Polar 6). It is a successive version of the laboratory prototype instrument PHIPS-AIDA. In this paper we present the detailed design of PHIPS-HALO, including the detection mechanism, optical design, mechanical construction and aerodynamic characterization.

Publications Copernicus
Download
Short summary
The properties of ice crystals present in mixed-phase and ice clouds influence the radiation properties, precipitation occurrence and lifetime of these clouds. It is necessary to investigate the optical and microphysical properties of cloud particles particularly in situ, and to get correlation between these properties. To this end we have developed PHIPS-HALO to measure the optical properties and the corresponding microphysical parameters of individual cloud particles simultaneously.
The properties of ice crystals present in mixed-phase and ice clouds influence the radiation...
Citation