Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 7
Atmos. Meas. Tech., 9, 3407–3427, 2016
https://doi.org/10.5194/amt-9-3407-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: TROPOMI on Sentinel-5 Precursor: data products and...

Atmos. Meas. Tech., 9, 3407–3427, 2016
https://doi.org/10.5194/amt-9-3407-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Jul 2016

Research article | 28 Jul 2016

Tropical tropospheric ozone columns from nadir retrievals of GOME-1/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A (1996–2012)

Elpida Leventidou, Kai-Uwe Eichmann, Mark Weber, and John P. Burrows Elpida Leventidou et al.
  • Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany

Abstract. Tropical tropospheric ozone columns are retrieved with the convective cloud differential (CCD) technique using total ozone columns and cloud parameters from different European satellite instruments. Monthly-mean tropospheric column amounts [DU] are calculated by subtracting the above-cloud ozone column from the total column. A CCD algorithm (CCD_IUP) has been developed as part of the verification algorithm developed for TROPOspheric Monitoring Instrument (TROPOMI) on Sentinel 5-precursor (S5p) mission, which was applied to GOME/ERS-2 (1995–2003), SCIAMACHY/Envisat (2002–2012), and GOME-2/MetOp-A (2007–2012) measurements. Thus a unique long-term record of monthly-mean tropical tropospheric ozone columns (20° S–20° N) from 1996 to 2012 is now available. An uncertainty estimation has been performed, resulting in a tropospheric ozone column uncertainty less than 2 DU ( < 10 %) for all instruments. The dataset has not been yet harmonised into one consistent; however, comparison between the three separate datasets (GOME/SCIAMACHY/GOME-2) shows that GOME-2 overestimates the tropical tropospheric ozone columns by about 8 DU, while SCIAMACHY and GOME are in good agreement. Validation with Southern Hemisphere ADditional OZonesondes (SHADOZ) data shows that tropospheric ozone columns from the CCD_IUP technique and collocated integrated ozonesonde profiles from the surface up to 200 hPa are in good agreement with respect to range, interannual variations, and variances. Biases within ±5 DU and root-mean-square (RMS) deviation of less than 10 DU are found for all instruments. CCD comparisons using SCIAMACHY data with tropospheric ozone columns derived from limb/nadir matching have shown that the bias and RMS deviation are within the range of the CCD_IUP comparison with the ozonesondes. The 17-year dataset can be helpful for evaluating chemistry models and performing climate change studies.

Publications Copernicus
Download
Short summary
Here, we present a 17 years tropical tropospheric ozone columns dataset (1996–2012) using GOME, SCIAMACHY, and GOME-2 data, developed as part of the verification algorithm for TROPOMI on S5p mission.The uncertainty is less than 2 DU. Validation with SHADOZ ozonesonde data showed biases within 5 DU and RMS errors less than 10 DU. Comparisons with tropospheric ozone columns derived from limb–nadir matching showed that the bias and RMS are within the range of the CCD_IUP comparison with the sondes.
Here, we present a 17 years tropical tropospheric ozone columns dataset (1996–2012) using GOME,...
Citation