Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 7
Atmos. Meas. Tech., 9, 3455–3466, 2016
https://doi.org/10.5194/amt-9-3455-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 3455–3466, 2016
https://doi.org/10.5194/amt-9-3455-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Jul 2016

Research article | 29 Jul 2016

Characterisation and improvement of j(O1D) filter radiometers

Birger Bohn et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Download
Short summary
Filter radiometers are instruments that quantify the rate of formation of excited oxygen atoms from photolysis of ozone in the atmosphere. The excited oxygen atoms are important for the atmospheric self-cleaning ability. The radiometers were characterised by measurements of their spectral response. Together with field comparisons with a reference instrument, the characterisations improved the performance. That will help to better understand atmospheric photochemistry in future research.
Filter radiometers are instruments that quantify the rate of formation of excited oxygen atoms...
Citation