Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
    3.707
  • CiteScore value: 6.3 CiteScore
    6.3
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
Volume 9, issue 8
Atmos. Meas. Tech., 9, 3739–3754, 2016
https://doi.org/10.5194/amt-9-3739-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 3739–3754, 2016
https://doi.org/10.5194/amt-9-3739-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Aug 2016

Research article | 12 Aug 2016

Relationship between temperature and apparent shape of pristine ice crystals derived from polarimetric cloud radar observations during the ACCEPT campaign

Alexander Myagkov et al.

Related authors

Evaluation of the reflectivity calibration of W-band radars based on observations in rain
Alexander Myagkov, Stefan Kneifel, and Thomas Rose
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-133,https://doi.org/10.5194/amt-2020-133, 2020
Preprint under review for AMT
Short summary
Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station
Johannes Bühl, Patric Seifert, Alexander Myagkov, and Albert Ansmann
Atmos. Chem. Phys., 16, 10609–10620, https://doi.org/10.5194/acp-16-10609-2016,https://doi.org/10.5194/acp-16-10609-2016, 2016
Short summary
Cloud radar with hybrid mode towards estimation of shape and orientation of ice crystals
A. Myagkov, P. Seifert, M. Bauer-Pfundstein, and U. Wandinger
Atmos. Meas. Tech., 9, 469–489, https://doi.org/10.5194/amt-9-469-2016,https://doi.org/10.5194/amt-9-469-2016, 2016
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Exploration of machine learning methods for the classification of infrared limb spectra of polar stratospheric clouds
Rocco Sedona, Lars Hoffmann, Reinhold Spang, Gabriele Cavallaro, Sabine Griessbach, Michael Höpfner, Matthias Book, and Morris Riedel
Atmos. Meas. Tech., 13, 3661–3682, https://doi.org/10.5194/amt-13-3661-2020,https://doi.org/10.5194/amt-13-3661-2020, 2020
Short summary
Three-dimensional wind profiles using a stabilized shipborne cloud radar in wind profiler mode
Alain Protat and Ian McRobert
Atmos. Meas. Tech., 13, 3609–3620, https://doi.org/10.5194/amt-13-3609-2020,https://doi.org/10.5194/amt-13-3609-2020, 2020
Short summary
Low-level liquid cloud properties during ORACLES retrieved using airborne polarimetric measurements and a neural network algorithm
Daniel J. Miller, Michal Segal-Rozenhaimer, Kirk Knobelspiesse, Jens Redemann, Brian Cairns, Mikhail Alexandrov, Bastiaan van Diedenhoven, and Andrzej Wasilewski
Atmos. Meas. Tech., 13, 3447–3470, https://doi.org/10.5194/amt-13-3447-2020,https://doi.org/10.5194/amt-13-3447-2020, 2020
Short summary
A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations
Chenxi Wang, Steven Platnick, Kerry Meyer, Zhibo Zhang, and Yaping Zhou
Atmos. Meas. Tech., 13, 2257–2277, https://doi.org/10.5194/amt-13-2257-2020,https://doi.org/10.5194/amt-13-2257-2020, 2020
Short summary
Using Two-Stream Theory to Capture Fluctuations of Satellite-Perceived TOA SW Radiances Reflected from Clouds over Ocean
Florian Tornow, Carlos Domenech, Howard W. Barker, René Preusker, and Jürgen Fischer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-149,https://doi.org/10.5194/amt-2020-149, 2020
Revised manuscript accepted for AMT
Short summary

Cited articles

Althausen, D., Engelmann, R., Baars, H., Heese, B., Ansmann, A., Müller, D., and Komppula, M.: Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization, J. Atmos. Ocean. Tech., 26, 2366, https://doi.org/10.1175/2009JTECHA1304.1, 2009.
Ansmann, A., Tesche, M., Seifert, P., Althausen, D., Engelmann, R., Fruntke, J., Wandinger, U., Mattis, I., and Müller, D.: Evolution of the ice phase in tropical altocumulus: SAMUM lidar observations over Cape Verde, J. Geophys. Res., 114, D17208, https://doi.org/10.1029/2008JD011659, 2009.
Bailey, M. and Hallett, J.: Growth rates and habits of ice crystals between −20 °C and −70 °C, J. Atmos. Sci., 61, 514–544, https://doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2, 2004.
Bailey, M. P. and Hallett, J.: A comprehensive habit diagram for atmospheric ice crystals: confirmation from the laboratory, AIRS II, and other field studies, J. Atmos. Sci., 66, 2888, https://doi.org/10.1175/2009JAS2883.1, 2009.
Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler Weather Radar, Cambridge University Press, Cambridge, UK, 662 pp., 2001.
Publications Copernicus
Download
Short summary
This paper presents first quantitative estimations of ice particle shape at the top of liquid-topped clouds. The estimation is based on polarimetric measurements from a Ka-band cloud radar. 22 cases observed during the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign were used. Data from a free-fall chamber were used for the comparison. A good agreement of detected shapes with known shape–temperature dependencies observed in laboratories was found.
This paper presents first quantitative estimations of ice particle shape at the top of...
Citation