Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 8
Atmos. Meas. Tech., 9, 3893–3910, 2016
https://doi.org/10.5194/amt-9-3893-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 3893–3910, 2016
https://doi.org/10.5194/amt-9-3893-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Aug 2016

Research article | 23 Aug 2016

The CU 2-D-MAX-DOAS instrument – Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties

Ivan Ortega et al.

Related authors

TROPOMI/S5P formaldehyde validation using an extensive network of ground-based FTIR stations
Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Thomas Blumenstock, Martine De Mazière, Isabelle De Smedt, Michel Grutter, James Hannigan, Nicholas Jones, Rigel Kivi, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Gaia Pinardi, Amelie Röhling, Dan Smale, Wolfgang Stremme, Kim Strong, Ralf Sussmann, Yao Té, Michel van Roozendael, Pucai Wang, and Holger Winkler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-30,https://doi.org/10.5194/amt-2020-30, 2020
Revised manuscript under review for AMT
Short summary
Detection and Attribution of Wildfire Pollution in the Arctic and Northern Mid-latitudes using a Network of FTIR Spectrometers and GEOS-Chem
Erik Lutsch, Kimberly Strong, Dylan B. A. Jones, Thomas Blumenstock, Stephanie Conway, Jenny A. Fisher, James W. Hannigan, Frank Hase, Yasuko Kasai, Emmanuel Mahieu, Maria Makarova, Isamu Morino, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Anatoly V. Poberovskii, Ralf Sussmann, and Thorsten Warneke
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-881,https://doi.org/10.5194/acp-2019-881, 2019
Revised manuscript under review for ACP
Short summary
Tropospheric water vapor profiles obtained with FTIR: comparison with balloon-borne frost point hygrometers and influence on trace gas retrievals
Ivan Ortega, Rebecca R. Buchholz, Emrys G. Hall, Dale F. Hurst, Allen F. Jordan, and James W. Hannigan
Atmos. Meas. Tech., 12, 873–890, https://doi.org/10.5194/amt-12-873-2019,https://doi.org/10.5194/amt-12-873-2019, 2019
Short summary
NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances
Corinne Vigouroux, Carlos Augusto Bauer Aquino, Maite Bauwens, Cornelis Becker, Thomas Blumenstock, Martine De Mazière, Omaira García, Michel Grutter, César Guarin, James Hannigan, Frank Hase, Nicholas Jones, Rigel Kivi, Dmitry Koshelev, Bavo Langerock, Erik Lutsch, Maria Makarova, Jean-Marc Metzger, Jean-François Müller, Justus Notholt, Ivan Ortega, Mathias Palm, Clare Paton-Walsh, Anatoly Poberovskii, Markus Rettinger, John Robinson, Dan Smale, Trissevgeni Stavrakou, Wolfgang Stremme, Kim Strong, Ralf Sussmann, Yao Té, and Geoffrey Toon
Atmos. Meas. Tech., 11, 5049–5073, https://doi.org/10.5194/amt-11-5049-2018,https://doi.org/10.5194/amt-11-5049-2018, 2018
Short summary
MLS measurements of stratospheric hydrogen cyanide during the 2015–2016 El Niño event
Hugh C. Pumphrey, Norbert Glatthor, Peter F. Bernath, Christopher D. Boone, James W. Hannigan, Ivan Ortega, Nathaniel J. Livesey, and William G. Read
Atmos. Chem. Phys., 18, 691–703, https://doi.org/10.5194/acp-18-691-2018,https://doi.org/10.5194/acp-18-691-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Issues related to the retrieval of stratospheric-aerosol particle size information based on optical measurements
Christian von Savigny and Christoph G. Hoffmann
Atmos. Meas. Tech., 13, 1909–1920, https://doi.org/10.5194/amt-13-1909-2020,https://doi.org/10.5194/amt-13-1909-2020, 2020
Short summary
A new lidar inversion method using a surface reference target applied to the backscattering coefficient and lidar ratio retrievals of a fog-oil plume at short range
Florian Gaudfrin, Olivier Pujol, Romain Ceolato, Guillaume Huss, and Nicolas Riviere
Atmos. Meas. Tech., 13, 1921–1935, https://doi.org/10.5194/amt-13-1921-2020,https://doi.org/10.5194/amt-13-1921-2020, 2020
Short summary
A multi-axis differential optical absorption spectroscopy aerosol profile retrieval algorithm for high-altitude measurements: application to measurements at Schneefernerhaus (UFS), Germany
Zhuoru Wang, Ka Lok Chan, Klaus-Peter Heue, Adrian Doicu, Thomas Wagner, Robert Holla, and Matthias Wiegner
Atmos. Meas. Tech., 13, 1835–1866, https://doi.org/10.5194/amt-13-1835-2020,https://doi.org/10.5194/amt-13-1835-2020, 2020
Short summary
The potential of elastic and polarization lidars to retrieve extinction profiles
Elina Giannakaki, Panos Kokkalis, Eleni Marinou, Nikolaos S. Bartsotas, Vassilis Amiridis, Albert Ansmann, and Mika Komppula
Atmos. Meas. Tech., 13, 893–905, https://doi.org/10.5194/amt-13-893-2020,https://doi.org/10.5194/amt-13-893-2020, 2020
Short summary
Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product
Michael J. Garay, Marcin L. Witek, Ralph A. Kahn, Felix C. Seidel, James A. Limbacher, Michael A. Bull, David J. Diner, Earl G. Hansen, Olga V. Kalashnikova, Huikyo Lee, Abigail M. Nastan, and Yan Yu
Atmos. Meas. Tech., 13, 593–628, https://doi.org/10.5194/amt-13-593-2020,https://doi.org/10.5194/amt-13-593-2020, 2020
Short summary

Cited articles

Augustine, J. A., Hodges, G. B., Dutton, E. G., Michalsky, J. J., and Cornwall, C. R.: An aerosol optical depth climatology for NOAA's national surface radiation budget network (SURFRAD), J. Geophys. Res.-Atmos., 113, D11204, https://doi.org/10.1029/2007JD009504, 2008.
Baidar, S., Oetjen, H., Coburn, S., Dix, B., Ortega, I., Sinreich, R., and Volkamer, R.: The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases, Atmos. Meas. Tech., 6, 719–739, https://doi.org/10.5194/amt-6-719-2013, 2013.
Baidar, S., Kille, N., Ortega, I., Sinreich, R., Thomson, D., Hannigan, J., and Volkamer, R.: Development of a digital mobile solar tracker, Atmos. Meas. Tech., 9, 963–972, https://doi.org/10.5194/amt-9-963-2016, 2016.
Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh Optical Depth Calculations, J. Atmos. Ocean. Tech., 16, 1854–1861, 1999.
Publications Copernicus
Download
Short summary
We present an inherently calibrated retrieval to measure aerosol optical depth (AOD) and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity by the University of Colorado two-dimensional (2-D) MAX-DOAS. The retrievals are maximally sensitive at low AOD and do not require absolute radiance calibration. We compare results with data from independent sensors.
We present an inherently calibrated retrieval to measure aerosol optical depth (AOD) and the...
Citation