Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 9, 4935-4953, 2016
https://doi.org/10.5194/amt-9-4935-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
07 Oct 2016
Assessment of lidar depolarization uncertainty by means of a polarimetric lidar simulator
Juan Antonio Bravo-Aranda1,2,3, Livio Belegante4, Volker Freudenthaler5, Lucas Alados-Arboledas1,2, Doina Nicolae4, María José Granados-Muñoz1,2, Juan Luis Guerrero-Rascado1,2, Aldo Amodeo6, Giusseppe D'Amico6, Ronny Engelmann7, Gelsomina Pappalardo6, Panos Kokkalis8, Rodanthy Mamouri9, Alex Papayannis8, Francisco Navas-Guzmán1,2,a, Francisco José Olmo1,2, Ulla Wandinger7, Francesco Amato6, and Martial Haeffelin3 1Andalusian Institute for Earth System Research (IISTA-CEAMA), Granada, Spain
2Dpt. Applied Physics, University of Granada, Granada, Spain
3Institute Pierre-Simon Laplace, CNRS-Ecole Polytechnique, Paris, France
4National Institute of Research & Development for Optoelectronics – INOE 2000, Magurele, Ilfov, Romania
5Ludwig-Maximilians-Universität Meteorologisches Institut, München, Germany
6Consiglio Nazionale delle Ricerche Istituto di Metodologie per l'Analisi Ambientale I.M.A.A. – C.N.R., Potenza, Italy
7Leibniz Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
8Laser Remote Sensing Unit, National Technical University of Athens, Physics Dept., 15780 Zografou, Greece
9Department of Civil Engineering and Geomatics, Cyprus University Of Technology, Lemesos, Cyprus
anow at: Institute of Applied Physics (IAP), University of Bern, Bern, Switzerland
Abstract. Lidar depolarization measurements distinguish between spherical and non-spherical aerosol particles based on the change of the polarization state between the emitted and received signal. The particle shape information in combination with other aerosol optical properties allows the characterization of different aerosol types and the retrieval of aerosol particle microphysical properties. Regarding the microphysical inversions, the lidar depolarization technique is becoming a key method since particle shape information can be used by algorithms based on spheres and spheroids, optimizing the retrieval procedure. Thus, the identification of the depolarization error sources and the quantification of their effects are crucial. This work presents a new tool to assess the systematic error of the volume linear depolarization ratio (δ), combining the Stokes–Müller formalism and the complete sampling of the error space using the lidar model presented in Freudenthaler (2016a). This tool is applied to a synthetic lidar system and to several EARLINET lidars with depolarization capabilities at 355 or 532 nm. The lidar systems show relative errors of δ larger than 100 % for δ values around molecular linear depolarization ratios (∼ 0.004 and up to ∼  10 % for δ = 0.45). However, one system shows only relative errors of 25 and 0.22 % for δ = 0.004 and δ = 0.45, respectively, and gives an example of how a proper identification and reduction of the main error sources can drastically reduce the systematic errors of δ. In this regard, we provide some indications of how to reduce the systematic errors.

Citation: Bravo-Aranda, J. A., Belegante, L., Freudenthaler, V., Alados-Arboledas, L., Nicolae, D., Granados-Muñoz, M. J., Guerrero-Rascado, J. L., Amodeo, A., D'Amico, G., Engelmann, R., Pappalardo, G., Kokkalis, P., Mamouri, R., Papayannis, A., Navas-Guzmán, F., Olmo, F. J., Wandinger, U., Amato, F., and Haeffelin, M.: Assessment of lidar depolarization uncertainty by means of a polarimetric lidar simulator, Atmos. Meas. Tech., 9, 4935-4953, https://doi.org/10.5194/amt-9-4935-2016, 2016.
Publications Copernicus
Download
Short summary
This work analyses the lidar polarizing sensitivity by means of the Stokes–Müller formalism and provides a new tool to quantify the systematic error of the volume linear depolarization ration (δ) using the Monte Carlo technique. Results evidence the importance of the lidar polarizing effects which can lead to systematic errors larger than 100 %. Additionally, we demonstrate that a proper lidar characterization helps to reduce the uncertainty.
This work analyses the lidar polarizing sensitivity by means of the Stokes–Müller formalism and...
Share