Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 9, issue 10 | Copyright

Special issue: TROPOMI on Sentinel-5 Precursor: data products and...

Atmos. Meas. Tech., 9, 5037-5051, 2016
https://doi.org/10.5194/amt-9-5037-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Oct 2016

Research article | 13 Oct 2016

Trends of tropical tropospheric ozone from 20 years of European satellite measurements and perspectives for the Sentinel-5 Precursor

Klaus-Peter Heue1, Melanie Coldewey-Egbers1, Andy Delcloo2, Christophe Lerot3, Diego Loyola1, Pieter Valks1, and Michel van Roozendael3 Klaus-Peter Heue et al.
  • 1Deutsches Zentrum für Luft- und Raumfahrt, Münchener Str. 20, 82234 Oberpfaffenhofen, Germany
  • 2Royal Meteorological Institute, Avenue Circulaire 3, 1180 Brussels, Belgium
  • 3Royal Belgian Institute for Space Aeronomy, Ringlaan 3, 1180 Brussels, Belgium

Abstract. In preparation of the TROPOMI/S5P launch in early 2017, a tropospheric ozone retrieval based on the convective cloud differential method was developed. For intensive tests we applied the algorithm to the total ozone columns and cloud data of the satellite instruments GOME, SCIAMACHY, OMI, GOME-2A and GOME-2B. Thereby a time series of 20 years (1995–2015) of tropospheric column ozone was generated. To have a consistent total ozone data set for all sensors, one common retrieval algorithm, namely GODFITv3, was applied and the L1 reflectances were also soft calibrated. The total ozone columns and the cloud data were input into the tropospheric ozone retrieval. However, the tropical tropospheric column ozone (TCO) for the individual instruments still showed small differences and, therefore, we harmonised the data set. For this purpose, a multilinear function was fitted to the averaged difference between SCIAMACHY's TCO and those from the other sensors. The original TCO was corrected by the fitted offset. GOME-2B data were corrected relative to the harmonised data from OMI and GOME-2A. The harmonisation leads to a better agreement between the different instruments. Also, a direct comparison of the TCO in the overlapping periods proves that GOME-2A agrees much better with SCIAMACHY after the harmonisation. The improvements for OMI were small.

Based on the harmonised observations, we created a merged data product, containing the TCO from July 1995 to December 2015. A first application of this 20-year record is a trend analysis. The tropical trend is 0.7 ± 0.12DUdecade−1. Regionally the trends reach up to 1.8DUdecade−1 like on the African Atlantic coast, while over the western Pacific the tropospheric ozone declined over the last 20 years with up to 0.8DUdecade−1. The tropical tropospheric data record will be extended in the future with the TROPOMI/S5P data, where the TCO is part of the operational products.

Publications Copernicus
Special issue
Download
Short summary
The tropical tropospheric column ozone (TCO) from 5 GOME-type satellite instruments were harmonised to get a consistent time series of tropospheric ozone for 20 years. The time series showed a global ozone trend below 10 km of 0.7 DU per decade. Also the regional trends were analysed and trends up to 1.8 DU per decade or decreases as low as 0.8 DU per decade were observed. The TCO will be part of the operation product for Tropomi/S5P and thereby extended for at least 7 years.
The tropical tropospheric column ozone (TCO) from 5 GOME-type satellite instruments were...
Citation
Share