Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
    3.650
  • CiteScore value: 3.37 CiteScore
    3.37
  • SNIP value: 1.253 SNIP 1.253
  • IPP value: 3.29 IPP 3.29
  • SJR value: 1.869 SJR 1.869
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
  • h5-index value: 47 h5-index 47
Volume 9, issue 11
Atmos. Meas. Tech., 9, 5655-5675, 2016
https://doi.org/10.5194/amt-9-5655-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 5655-5675, 2016
https://doi.org/10.5194/amt-9-5655-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Nov 2016

Research article | 28 Nov 2016

Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS

Barbara Dix et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Short summary
We present a parameterization method for the conversion of measured trace gas slant column densities into volume mixing ratios along a flight track. Benefits of this method are that it is computationally fast and almost no information on local atmospheric conditions is needed. Application to simulated data and field data show that the method is accurate within 10–15 % and valid for a wide range of atmospheric conditions. Our method can easily be transferred to other trace gases.
We present a parameterization method for the conversion of measured trace gas slant column...
Citation