Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 12
Atmos. Meas. Tech., 9, 5707–5719, 2016
https://doi.org/10.5194/amt-9-5707-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 5707–5719, 2016
https://doi.org/10.5194/amt-9-5707-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Nov 2016

Research article | 29 Nov 2016

A high-altitude balloon platform for determining exchange of carbon dioxide over agricultural landscapes

Angie Bouche1, Bernhard Beck-Winchatz2, and Mark J. Potosnak1 Angie Bouche et al.
  • 1Department of Environmental Science and Studies, DePaul University, 1110 W Belden Ave, Chicago, IL, 60614, USA
  • 2Department of Science, Technology, Engineering and Math Studies, DePaul University, 990 W Fullerton Ave, Chicago, IL, 60614, USA

Abstract. The exchange of carbon dioxide between the terrestrial biosphere and the atmosphere is a key process in the global carbon cycle. Given emissions from fossil fuel combustion and the appropriation of net primary productivity by human activities, understanding the carbon dioxide exchange of cropland agroecosystems is critical for evaluating future trajectories of climate change. In addition, human manipulation of agroecosystems has been proposed as a technique of removing carbon dioxide from the atmosphere via practices such as no-tillage and cover crops. We propose a novel method of measuring the exchange of carbon dioxide over croplands using a high-altitude balloon (HAB) platform. The HAB methodology measures two sequential vertical profiles of carbon dioxide mixing ratio, and the surface exchange is calculated using a fixed-mass column approach. This methodology is relatively inexpensive, does not rely on any assumptions besides spatial homogeneity (no horizontal advection) and provides data over a spatial scale between stationary flux towers and satellite-based inversion calculations. The HAB methodology was employed during the 2014 and 2015 growing seasons in central Illinois, and the results are compared to satellite-based NDVI values and a flux tower located relatively near the launch site in Bondville, Illinois. These initial favorable results demonstrate the utility of the methodology for providing carbon dioxide exchange data over a large (10–100 km) spatial area. One drawback is its relatively limited temporal coverage. While recruiting citizen scientists to perform the launches could provide a more extensive dataset, the HAB methodology is not appropriate for providing estimates of net annual carbon dioxide exchange. Instead, a HAB dataset could provide an important check for upscaling flux tower results and verifying satellite-derived exchange estimates.

Publications Copernicus
Download
Short summary
We describe a novel method of measuring the exchange of carbon dioxide over croplands using a high-altitude balloon (HAB). Our methodology uses two balloon launches on a single day to measure atmospheric changes in carbon dioxide and then relate them to the photosynthesis and respiration of the crops. Our results are compared to satellite measures of greenness and a research site in Bondville, Illinois. A future goal is to recruit citizen scientists to perform the launches.
We describe a novel method of measuring the exchange of carbon dioxide over croplands using a...
Citation