Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
  • CiteScore value: 3.71 CiteScore
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 9, issue 12 | Copyright
Atmos. Meas. Tech., 9, 5763-5779, 2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Dec 2016

Research article | 01 Dec 2016

Measuring OVOCs and VOCs by PTR-MS in an urban roadside microenvironment of Hong Kong: relative humidity and temperature dependence, and field intercomparisons

Long Cui1, Zhou Zhang2, Yu Huang3,4, Shun Cheng Lee1, Donald Ray Blake5, Kin Fai Ho6, Bei Wang7, Yuan Gao1,8, Xin Ming Wang2, and Peter Kwok Keung Louie9 Long Cui et al.
  • 1Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
  • 2State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
  • 3Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
  • 4State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
  • 5Department of Chemistry, University of California, Irvine, CA, USA
  • 6School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong, China
  • 7Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
  • 8Department of Civil Engineering, Chu Hai College of Higher Education, New Territories, Hong Kong, China
  • 9Hong Kong Environmental Protection Department, Revenue Tower, 5 Gloucester Road, Wanchai, Hong Kong, China

Abstract. Volatile organic compound (VOC) control is an important issue of air quality management in Hong Kong because ozone formation is generally VOC limited. Several oxygenated volatile organic compound (OVOC) and VOC measurement techniques – namely, (1) offline 2,4-dinitrophenylhydrazine (DNPH) cartridge sampling followed by high-performance liquid chromatography (HPLC) analysis; (2) online gas chromatography (GC) with flame ionization detection (FID); and (3) offline canister sampling followed by GC with mass spectrometer detection (MSD), FID, and electron capture detection (ECD) – were applied during this study. For the first time, the proton transfer reaction–mass spectrometry (PTR-MS) technique was also introduced to measured OVOCs and VOCs in an urban roadside area of Hong Kong. The integrated effect of ambient relative humidity (RH) and temperature (T) on formaldehyde measurements by PTR-MS was explored in this study. A Poly 2-D regression was found to be the best nonlinear surface simulation (r = 0.97) of the experimental reaction rate coefficient ratio, ambient RH, and T for formaldehyde measurement. This correction method was found to be better than correcting formaldehyde concentrations directly via the absolute humidity of inlet sample, based on a 2-year field sampling campaign at Mong Kok (MK) in Hong Kong. For OVOC species, formaldehyde, acetaldehyde, acetone, and MEK showed good agreements between PTR-MS and DNPH-HPLC with slopes of 1.00, 1.10, 0.76, and 0.88, respectively, and correlation coefficients of 0.79, 0.75, 0.60, and 0.93, respectively. Overall, fair agreements were found between PTR-MS and online GC-FID for benzene (slope = 1.23, r = 0.95), toluene (slope = 1.01, r = 0.96) and C2-benzenes (slope = 1.02, r = 0.96) after correcting benzene and C2-benzenes levels which could be affected by fragments formed from ethylbenzene. For the intercomparisons between PTR-MS and offline canister measurements by GC-MSD/FID/ECD, benzene showed good agreement, with a slope of 1.05 (r = 0.62), though PTR-MS had lower values for toluene and C2-benzenes with slopes of 0.78 (r = 0.96) and 0.67 (r = 0.92), respectively. All in all, the PTR-MS instrument is suitable for OVOC and VOC measurements in urban roadside areas.

Publications Copernicus
Short summary
In this manuscript, the effect of ambient RH and T on HCHO measurements by PTR-MS was investigated, and the Poly 2-D regression was found to be a good nonlinear surface simulation of R (RH, T) for correcting measured HCHO concentration. Intercomparisons between PTR-MS and other OVOC and VOC measuring techniques were conducted through a field study in urban roadside areas of Hong Kong primarily, and good agreements were found between these different techniques.
In this manuscript, the effect of ambient RH and T on HCHO measurements by PTR-MS was...