Articles | Volume 9, issue 12
https://doi.org/10.5194/amt-9-6025-2016
https://doi.org/10.5194/amt-9-6025-2016
Research article
 | 
15 Dec 2016
Research article |  | 15 Dec 2016

The AOTF-based NO2 camera

Emmanuel Dekemper, Jurgen Vanhamel, Bert Van Opstal, and Didier Fussen

Related authors

On the capability of the future ALTIUS ultraviolet–visible–near-infrared limb sounder to constrain modelled stratospheric ozone
Quentin Errera, Emmanuel Dekemper, Noel Baker, Jonas Debosscher, Philippe Demoulin, Nina Mateshvili, Didier Pieroux, Filip Vanhellemont, and Didier Fussen
Atmos. Meas. Tech., 14, 4737–4753, https://doi.org/10.5194/amt-14-4737-2021,https://doi.org/10.5194/amt-14-4737-2021, 2021
Short summary
Systematic comparison of vectorial spherical radiative transfer models in limb scattering geometry
Daniel Zawada, Ghislain Franssens, Robert Loughman, Antti Mikkonen, Alexei Rozanov, Claudia Emde, Adam Bourassa, Seth Dueck, Hannakaisa Lindqvist, Didier Ramon, Vladimir Rozanov, Emmanuel Dekemper, Erkki Kyrölä, John P. Burrows, Didier Fussen, and Doug Degenstein
Atmos. Meas. Tech., 14, 3953–3972, https://doi.org/10.5194/amt-14-3953-2021,https://doi.org/10.5194/amt-14-3953-2021, 2021
Short summary
Satellite validation strategy assessments based on the AROMAT campaigns
Alexis Merlaud, Livio Belegante, Daniel-Eduard Constantin, Mirjam Den Hoed, Andreas Carlos Meier, Marc Allaart, Magdalena Ardelean, Maxim Arseni, Tim Bösch, Hugues Brenot, Andreea Calcan, Emmanuel Dekemper, Sebastian Donner, Steffen Dörner, Mariana Carmelia Balanica Dragomir, Lucian Georgescu, Anca Nemuc, Doina Nicolae, Gaia Pinardi, Andreas Richter, Adrian Rosu, Thomas Ruhtz, Anja Schönhardt, Dirk Schuettemeyer, Reza Shaiganfar, Kerstin Stebel, Frederik Tack, Sorin Nicolae Vâjâiac, Jeni Vasilescu, Jurgen Vanhamel, Thomas Wagner, and Michel Van Roozendael
Atmos. Meas. Tech., 13, 5513–5535, https://doi.org/10.5194/amt-13-5513-2020,https://doi.org/10.5194/amt-13-5513-2020, 2020
Short summary
AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations – Part 2: Intercomparisons
Charles Étienne Robert, Christine Bingen, Filip Vanhellemont, Nina Mateshvili, Emmanuel Dekemper, Cédric Tétard, Didier Fussen, Adam Bourassa, and Claus Zehner
Atmos. Meas. Tech., 9, 4701–4718, https://doi.org/10.5194/amt-9-4701-2016,https://doi.org/10.5194/amt-9-4701-2016, 2016
Short summary
AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations – Part 1: Algorithm description
Filip Vanhellemont, Nina Mateshvili, Laurent Blanot, Charles Étienne Robert, Christine Bingen, Viktoria Sofieva, Francis Dalaudier, Cédric Tétard, Didier Fussen, Emmanuel Dekemper, Erkki Kyrölä, Marko Laine, Johanna Tamminen, and Claus Zehner
Atmos. Meas. Tech., 9, 4687–4700, https://doi.org/10.5194/amt-9-4687-2016,https://doi.org/10.5194/amt-9-4687-2016, 2016
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Instruments and Platforms
Offshore methane detection and quantification from space using sun glint measurements with the GHGSat constellation
Jean-Philippe W. MacLean, Marianne Girard, Dylan Jervis, David Marshall, Jason McKeever, Antoine Ramier, Mathias Strupler, Ewan Tarrant, and David Young
Atmos. Meas. Tech., 17, 863–874, https://doi.org/10.5194/amt-17-863-2024,https://doi.org/10.5194/amt-17-863-2024, 2024
Short summary
Novel use of an adapted ultraviolet double monochromator for measurements of global and direct irradiance, ozone, and aerosol
Alexander Geddes, Ben Liley, Richard McKenzie, Michael Kotkamp, and Richard Querel
Atmos. Meas. Tech., 17, 827–838, https://doi.org/10.5194/amt-17-827-2024,https://doi.org/10.5194/amt-17-827-2024, 2024
Short summary
Geostationary Environment Monitoring Spectrometer (GEMS) polarization characteristics and correction algorithm
Haklim Choi, Xiong Liu, Ukkyo Jeong, Heesung Chong, Jhoon Kim, Myung Hwan Ahn, Dai Ho Ko, Dong-Won Lee, Kyung-Jung Moon, and Kwang-Mog Lee
Atmos. Meas. Tech., 17, 145–164, https://doi.org/10.5194/amt-17-145-2024,https://doi.org/10.5194/amt-17-145-2024, 2024
Short summary
An open-path observatory for greenhouse gases based on near-infrared Fourier transform spectroscopy
Tobias D. Schmitt, Jonas Kuhn, Ralph Kleinschek, Benedikt A. Löw, Stefan Schmitt, William Cranton, Martina Schmidt, Sanam N. Vardag, Frank Hase, David W. T. Griffith, and André Butz
Atmos. Meas. Tech., 16, 6097–6110, https://doi.org/10.5194/amt-16-6097-2023,https://doi.org/10.5194/amt-16-6097-2023, 2023
Short summary
Ground-to-UAV, laser-based emissions quantification of methane and acetylene at long standoff distances
Kevin C. Cossel, Eleanor M. Waxman, Eli Hoenig, Daniel Hesselius, Christopher Chaote, Ian Coddington, and Nathan R. Newbury
Atmos. Meas. Tech., 16, 5697–5707, https://doi.org/10.5194/amt-16-5697-2023,https://doi.org/10.5194/amt-16-5697-2023, 2023
Short summary

Cited articles

Bluth, G. J. S., Shannon, J. M., Watson, I. M., Prata, A. J., and Realmuto, V. J.: Development of an ultra-violet digital camera for volcanic SO2 imaging, J. Volcanol. Geoth. Res., 161, 47–56, https://doi.org/10.1016/j.jvolgeores.2006.11.004, 2007.
Chang, I. C.: Noncollinear acousto-optic filter with large angular aperture, Appl. Phys. Lett., 25, 370–372, https://doi.org/10.1063/1.1655512, 1974.
Chowdhury, B., Karamchandani, P., Sykes, R., Henn, D., and Knipping, E.: Reactive puff model SCICHEM: Model enhancements and performance studies, Atmos. Environ., 117, 242–258, https://doi.org/10.1016/j.atmosenv.2015.07.012, 2015.
Dekemper, E., Loodts, N., Van Opstal, B., Maes, J., Vanhellemont, F., Mateshvili, N., Franssens, G., Pieroux, D., Bingen, C., Robert, C., De Vos, L., Aballea, L., and Fussen, D.: Tunable acousto-optic spectral imager for atmospheric composition measurements in the visible spectral domain, Appl. Optics, 51, 6259–6267, https://doi.org/10.1364/AO.51.006259, 2012.
Flagan, R. C. and Seinfeld, J. H.: Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, USA, 1988.
Download
Short summary
We present a spectral imager capable of measuring the 2-D distribution of NO2 above well-delimited emission sources (power plant, city, etc.) with an unprecedent spatiotemporal resolution. Tests at a coal-fired power plant demonstrated its capability to observe dynamic processes such as the conversion from NO to NO2 in the early plume. Potential applications are pollution sources monitoring, reactive plume chemistry models validation, ships and volcanic emissions tracking, etc.